Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1422-1430    DOI: 10.3724/SP.J.1037.2012.00291
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 0Cr13 FERRITIC STAINLESS STEEL PROCESSED BY EQUAL–CHANNEL ANGULAR PRESSING AND SUBSEQUENT ANNEALING TREATMENT
YANG Muxin 1,2, YANG Gang 2, LIU Zhengdong 2, Du Xiqian 2, HUANG Chongxiang 3
1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2. Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
3. College of Architecture and Environment, Sichuan University, Chengdu 610065
Cite this article: 

YANG Muxin YANG Gang LIU Zhengdong Du Xiqian HUANG Chongxiang. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 0Cr13 FERRITIC STAINLESS STEEL PROCESSED BY EQUAL–CHANNEL ANGULAR PRESSING AND SUBSEQUENT ANNEALING TREATMENT. Acta Metall Sin, 2012, 48(12): 1422-1430.

Download:  PDF(2454KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In comparison with austenitic stainless steel, the ferritic stainless steel has obvious advantage in price due to its lower nickel content. However, the relatively poor ductility and toughness limit its applications. To overcome these shortcomings, a new thermo–mechanical approach, involving processing by severe plastic deformation and proper annealing treatment to introduce a bimodal grain size distribution, was adopted for achieving high work–hardening capability, superior strength–ductility combination and good impact toughness in metallic materials. In this work, the combined effects of severe plastic deformation and partially recrystallization on the microstructures and mechanical properties of a ferritic stainless steel were investigated and compared with the traditional forging and annealing process. An solution–treated ferritic stainless steel (0Cr13, AISI 405) was subjected to equal–channel angular pressing (ECAP, an important kind of severe plastic deformation) for two passes at room temperature and subsequent annealing treatments. Optical microscope (OM) and transmission electron microscopy (TEM) observations showed that ultrafine-grained (UFG) structure was obtained in the ECAP–processed sample. After subsequent annealing at 650—750 ℃ for 1 h, partial recrystallization occurred and the remaining island–like UFG grains (10%—35% volume fraction) distributed uniformly. Statistical measurements indicated that the microstructures of the annealed ECAP samples exhibited a bimodal grain size distribution including relatively coarse recrystallized grains (CRGs) and remaining ultrafine grains (UFGs). The average grain size for CRGs determined from OM observations was 5.1—8.3 μm and the average grain size for UFGs measured from TEM observations was 418—525 nm. By contrast, the annealed forged sample (700℃) exhibited a unimodal grain size distribution with average grain size of about 74 μm. Tensile and impact tests showed that the strength of 0Cr13 ferritic stainless steel could be improved greatly through grain refinement by ECAP process, and the strength–ductility combination could be modulated via sacrificing some strength for ductility by subsequent annealing treatment. In comparison with the conventional sample (forging+annealing at 700 ℃), the tested steel processed by the optimal processing involving ECAP deformation and annealing treatment at 700℃ showed higher yield strength, uniform ductility and static toughness (enhanced by 10%, 35% and 70% respectively), simultaneously a comparable impact toughness (212 J/cm2). The refined microstructure and higher work–hardening capacity were responsible for the improved mechanical properties of the annealed ECAP samples and the strengthening mechanisms were discussed based on the experimental results.

Key words:  0Cr13 ferritic stainless steel      equal–channel angular pressing (ECAP)      microstructure      tensile properties      impact toughness     
Received:  22 May 2012     
ZTFLH:  TG142.1  
  TG156.21  
Fund: 

Supported by National Natural Science Foundation of China (Nos.50971045 and 11172187) and Fundamental Research Funds for the Central Universities (No.0212SCU04A05)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00291     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1422

[1] Fujita T. Translated by Ding W H, Zhang X J, Chen Y Z. Heat Treatment of Stainless Steels. Beijing: China Machine Press, 1983: 106

(藤田辉夫著, 丁文华, 张绪江, 陈玉璋译. 不锈钢的热处理. 北京: 机械工业出版社, 1983: 106)

[2] Lu S Y, Zhang T K, Kang X F, Yang C Q, Wang X. Stainless Steel. Beijing: Atomic Energy Press, 1995: 77

(陆世英, 张廷凯, 康喜范, 杨长强, 王 熙. 不锈钢. 北京: 原子能出版社, 1995: 77)

[3] Wen Y Q. Ultra–Fine Grained Steels–Microstructural Refinement Theory and Controlled Technology of Steels. Beijing: Metallurgical Industry Press, 2003: 7

(翁宇庆. 超细晶钢-钢的组织细化理论与控制技术. 北京: 冶金工业出版社, 2003: 7)

[4] Song R, Ponge D, Raabe D, Speer J G, Matlock D K. Mater Sci Eng, 2006; A441: 1

[5] Wen D C. Mater Trans, 2006; 47: 2779

[6] Song R, Ponge D, Raabe D. Acta Mater, 2005; 53: 4881

[7] Calcagnotto M, Ponge D, Raabe D. Mater Sci Eng, 2010; A527: 7832

[8] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103

[9] Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257

(吴世丁, 安祥海, 韩卫忠, 屈伸, 张哲峰. 金属学报, 2010; 46: 257)

[10] Yang G, Yang M X, Liu Z D, Wang C. J Iron Steel Res Inter, 2011; 18: 40

[11] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351

[12] Wang Y M, Chen M W, Zhou F H, Ma E. Nature, 2002; 419: 912

[13] Wang Y M, Ma E, Chen M W. Appl Phys Lett, 2001; 80:2395

[14] Ma E. JOM, 2006; 58: 49

[15] Yang G, Huang C X, Wang C, Zhang L Y, Hu C, Zhang Z F, Wu S D. Mater Sci Eng, 2009; A515: 199

[16] Wang J T, Xu C, Du Z Z, Qu G Z, Langdon T G. Mater Sci Eng, 2005; A410: 312

[17] Yang M X, Yang G, Liu Z D, Wang C, Hu C, Huang C X. Acta Metall Sin, 2012; 48: 164

(杨沐鑫, 杨钢, 刘正东, 王昌, 胡超, 黄崇湘. 金属学报, 2012; 48: 164)

[18] JIS G. Cold–Rolled Stainless Steel Plate and Steel Belt Technical Standards. Tokyo: JSA, 2005: 20

[19] Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949

[20] William D, Callister Jr. Fundamentals of Materials Science and Engineering. 5th ed. New York: John Wiley &Sons Inc, 2001:185

[21] Fang D R, Duan Q Q, Huang C X, Wu S D, Zhang Z F, Li J J, Zhao N Q. Acta Metall Sin, 2007; 43: 1251

(房大然, 段启强, 黄崇湘, 吴世丁, 张哲峰, 李家俊, 赵乃勤. 金属学报, 2007; 43: 1251)

[22] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655

[23] ASTM E 112–96. Standard Test Methods for Determining Average Grain Size. West Conshohocken: ASTM International, 2004: 10

[24] Huang C X, Yang G, Gao Y L, Wu S D, Zhang Z F. Mater Sci Eng, 2008; A485: 643

[25] Huang C X, Yang G, Wang C, Zhang Z F, Wu S D. Metall Mater Trans, 2011; 42 A: 2061

[26] Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!