Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1415-1421    DOI: 10.3724/SP.J.1037.2012.00348
Current Issue | Archive | Adv Search |
EFFECT OF CONTROLLED ROLLING PROCESSING ON NANOMETER–SIZED CARBONITRIDE OF Ti–Mo FERRITE MATRIX MICROALLOYED STEEL
SUN Chaofan, CAI Qingwu, WU Huibin, MAO Hongyan, CHEN Hongzhen
National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

SUN Chaofan CAI Qingwu WU Huibin MAO Hongyan CHEN Hongzhen. EFFECT OF CONTROLLED ROLLING PROCESSING ON NANOMETER–SIZED CARBONITRIDE OF Ti–Mo FERRITE MATRIX MICROALLOYED STEEL. Acta Metall Sin, 2012, 48(12): 1415-1421.

Download:  PDF(1133KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Single nanometer–sized particles, which are smaller than 10 nm, can significantly enhance the precipitation strengthening in microalloyed steels, thus causing their strength to be promoted greatly. In order to improve the strength of the steel, it is quite necessary to get a large amount of single nanometer–sized particles through optimizing rolling technology. In this work, the effects of two different kinds of controlled rolling technologies on the size and distribution of precipitated particles in the Ti–Mo ferritie matrix microalloyed steel have been researched using SEM, TEM and small–angle X–ray scattering. The results show that with the same total rolling reduction, the steel rolled only in γ phase crystallization zone can obtain a higher portion of single nanometer–sized particles than that rolled respectively in phase recrystallization and nonrecrystallization zones, in which those single nanometer–sized particles account for about 75% (mass fraction) of whole precipitated particles. In order to study the effect of deformation potency in γ phase zone on the amount of precipitates in phase and the micro–crystal size, nucleation rate and incubation time of following precipitates in γ→α transformation and ferritie matrix after γ→α transformation, some thermodynamics and kinetics calculations and analysis on precipitation are also conducted.

Key words:  controlled rolling processing      Ti–Mo microalloyed steel      deformation potency      nanometer–sized carbonitride     
Received:  12 June 2012     
ZTFLH:  TG142.2  
Fund: 

Supported by National Natural Science Foundation of China (No.51274036)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00348     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1415

[1] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945

[2] Chen C Y, Yen H W, Kao F H, Li W C, Huang C Y, Yang J R, Wang S H. Mater Sci Eng, 2009; A499: 162

[3] Funakawa Y, Seto K. Mater Sci Forum, 2007; 539–543: 4813

[4] Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47:251

(段修刚, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)

[5] Jung J G, Park J S, Kim J, Lee Y K. Mater Sci Eng, 2011; A528: 5529

[6] Craven A J, He K, Garvie L A J, Baker T N. Acta Mater, 2000; 48: 3857

[7] Niu T, Kang Y L, Gu H W, Yin Y Q, Qiao M L. J IronSteel Res Int, 2010; 17: 73

[8] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163

[9] Hu B H. Master Dissertation, University of Science and Technology Beijing, 2012

(胡彬浩. 北京科技大学硕士学位论文, 2012)

[10] Okamoto R, Borgenstam A, Agren J. Acta Mater, 2010; 58: 4783

[11] Okamoto R, Agren J. Acta Mater, 2010; 58: 4791

[12] Duan X G, Cai Q W, Wu H B, Tang D. J Univ Sci Technol Beijing, 2012; 34: 644

(段修刚, 蔡庆伍, 武会宾, 唐荻. 北京科技大学学报, 2012; 34: 644)

[13] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd, 1978: 63

[14] Duan X G. PhD Thesis, University of Science and Technology Beijing, 2012

(段修刚. 北京科技大学博士学位论文, 2012)

[15] Cao J C. PhD Thesis, Kunming University of Science and Technology, 2006

(曹建春. 昆明理工大学博士学位论文, 2006)

[16] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 1

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 1)

[17] Zhang L Z, Zhao X M, Wu D, Xu Y B. J Iron Steel Res, 2006; 18(4): 41

(张良哲, 赵宪明, 吴迪, 许云波. 钢铁研究学报, 2006; 18(4): 41)

[18] Zhang L, Xue C X, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 791

(张玲, 薛春霞, 杨王月,孙祖庆. 金属学报, 2007; 43: 791)

[19] Yong Q L, Chen M X, Pei H Z, Pan L, Zhou X L, Yang T W, Zhong W, Hao J Y. J Iron Steel Res, 2006; 18(3): 30

(雍岐龙, 陈明昕, 裴和中, 潘俐, 周晓玲, 杨天武, 钟卫, 郝建英. 钢铁研究学报, 2006; 18(3): 30)

[20] Funakawa Y. Mater Sci Forum, 2012; 706–709: 2096

[1] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[3] QIN Xiaomei CHEN Liqing DI Hongshuang DENG Wei. EFFECT OF DEFORMATION TEMPERATURE ON TENSILE DEFORMATION MECHANISM OF Fe-23Mn-2Al-0.2C TWIP STEEL[J]. 金属学报, 2011, 47(9): 1117-1122.
[4] ZHAO Shuai LI Xiuyan RONG Lijian. SERRATED FLOW IN A FeNi–BASED AUSTENITIC ALLOY[J]. 金属学报, 2011, 47(8): 1017-1021.
[5] WANG Yongwei XU Fengyun XU Xuexia BAI Bingzhe. RESEARCH ON TRANSFORMATION OF GRANULAR STRUCTURE IN LOW CARBON Mn–Si STEEL[J]. 金属学报, 2009, 45(5): 559-565.
[6] Xu Feng-yun. The influence of martensite volume fraction, shape and strength on the mechanical properties of granular structure steels[J]. 金属学报, 2008, 44(10): 1183-1187 .
[7] Xu Feng-yun. The phase transformation residual stress in granular structure[J]. 金属学报, 2008, 44(9): 1063-1068 .
[8] Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION[J]. 金属学报, 2008, 44(9): 1095-1098 .
[9] GAO Jin. Corrosion Behavior of Microarc-oxidation Film on AZ91D Magnesium Alloy[J]. 金属学报, 2008, 44(8): 986-990 .
[10] ;. INVESTIGATION ON PHASE TRANSFORMATION OF ZG06Cr13Ni4Mo IN TEMPERING PROCESS WITH LOW HEATING RATE[J]. 金属学报, 2008, 44(6): 681-685 .
[11] Zhou Wen-Juan; Likun Xu; Jia Wang. study on corrosion electrochemical behavior of silane coating with flaked[J]. 金属学报, 2007, 43(9): 983-988 .
[12] WANG Songtao; YANG Ke; SHAN Yiyin; LI Laifeng. Effects of Cold Deformation on Microstructure And Mechanical Behavior of a High Nitrogen Austenitic Stainless Steel[J]. 金属学报, 2007, 43(7): 713-718 .
[13] . Effect of Hafnium on Radiation-induced Inter-granular Segregation in Ferritic Steel[J]. 金属学报, 2006, 42(10): 1041-1045 .
[14] Jian Zhang. STUDY OF HYDROGEN EMBRITLLEMENT IN Fe-Ni BASED ALLOY THROUGH POSITRON ANNIHILATION LIFETIME TEST[J]. 金属学报, 2006, 42(5): 469-473 .
[15] LI Xiuyan; RONG Lijian; LI Yiyi. Effects of grain boundary η phase on the mechanical properties of Fe-Ni-Cr alloy[J]. 金属学报, 2005, 41(11): 1155-1158 .
No Suggested Reading articles found!