Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1431-1436    DOI: 10.3724/SP.J.1037.2012.00416
Current Issue | Archive | Adv Search |
STUDY OF HUMPING TENDENCY AND AFFECTING FACTORS IN HIGH SPEED LASER WELDING OF STAINLESS STEEL SHEET
PEI Yinglei 1, SHAN Jiguo 1,2, REN Jialie 1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
Cite this article: 

PEI Yinglei SHAN Jiguo REN Jialie. STUDY OF HUMPING TENDENCY AND AFFECTING FACTORS IN HIGH SPEED LASER WELDING OF STAINLESS STEEL SHEET. Acta Metall Sin, 2012, 48(12): 1431-1436.

Download:  PDF(2724KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fiber laser was used to weld austenitic stainless steel SUS304 sheet at the speed of 24 m/min. The effects of laser power, welding speed and shielding gas on humping tendency have been investigated. The melt flow in the molten pool under different welding parameters was studied by Ti tracer method and CCD visual detection system. The results show that the humping tendency is not sensitive to the laser power. The humping is formed when welding speed exceeds 18 m/min, and goes up with the increasing of welding speed. The humping tendency is completely different as changing the direction of shielding gas under constant welding speed and laser power, and it is reduced when the shielding gas direction follows the welding direction. It can be explained that, with the increasing of welding speed, the melt flow becomes fierce, and the humping tendency goes up. The weld shape turns to the "columnar weld", when the shielding gas direction against the welding direction; the weld shape turns to the "cup weld" when the shielding gas direction follows the welding direction. The "cup weld" expanded "U area" which gentles the melt flow and reduces humping tendency. Therefore, adjusting the shielding gas direction to expand the "U area" is an effective approach to reduce the humping tendency.

Key words:  high speed laser welding      humping tendency      melt flow in the molten pool      welding process      austenitic stainless steel     
Received:  11 July 2012     
ZTFLH:  TG456.7  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00416     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1431

[1] Albright C E, Chiang S. In: Santa C ed., ICALEO’88 proceedings, Berlin/IFS: Springer, 1988: 207

[2] Nguyen T C, Weckman D C, Johnson D A, Kerr H W. Sci Technol Weld Join, 2006; 11: 618

[3] Wei P S. J Heat Transfer, 2011; 133: 031005–1

[4] Nguyen T C, Weckman D C. Sci Technol Weld Join, 2005; 10: 447

[5] Nguyen T C, Weckman D C. Johmson D A. Weld J, 2007; 86: 360

[6] Hu Z K, Wu C S. Acta Metall Sin, 2008; 44: 1445

(胡志坤, 武传松. 金属学报, 2008; 44: 1445)

[7] Chen J, Wu C S. Acta Metall Sin, 2009; 45: 1070

(陈姬, 武传松. 金属学报, 2009; 45: 1445)

[8] Wu C S, Hu Z K, Zhang Y M. Proc Inst Mech Eng, 2009; 233B: 751

[9] Ueyama T, Ohnawa T, Tanaka M, Nakata K. Sci Technol Weld Join, 2005; 10: 750

[10] Soderstrom E, Mendez P. Sci Technol Weld Join, 2006; 11: 572

[11] Cho M H, Farson D F. Metall Mater Trans, 2007; 38B: 305

[12] Fabbro R. J Phys, 2010; 43D: 445501

[13] Katayama S, Yoheia A, Mizutania M, Kawahitoa Y. In:Elsevier P O ed., Lasers in Manufacturing 2011–Proc 6th Int WLT Conference on Lasers in Manufacturing, Netherlands:

Physics Procedia, 2011: 75

[14] Kawahito Y, Mizutani M, Katayama S. J Phys, 2007; 40D: 5854

[15] Wei P S, Chuang K C, Ku J S, Debory T. IEEE Trans Comp Packag Manufact Technol, 2012; 2: 383

[16] Kawahito Y, Mizutani M, Katayama S. Sci Technol Weld Join, 2009; 14: 588

[17] Zhang L J, Zhang J X, Wang R, Gong S L. Rare Met Mater Eng, 2006; S2: 39

(张林杰, 张建勋, 王蕊, 巩水利. 稀有金属材料与工程, 2006; S2: 39)

[18] Berger P, H¨ugel H, Hess A, Weber R, Graf T. In: Elsevier P O ed., Lasers in Manufacturing 2011 – Proc 6th Int WLT Conferenceon Lasers in Manufacturing, Netherlands: Physics Procedia, 2011: 232

[19] Eriksson I, Powell J, Kaplan A F H. Sci Technol Weld Join, 2011; 16: 636

[20] Chen J. PhD Thesis, Shandong University, Jinan, 2009

(陈姬. 山东大学博士学位论文, 济南, 2009)

[21] Amara E H, Fabbro R. Appl Phys, 2010; 101A: 111

[22] Mendez P F, Eagar T W. Weld J, 2003; 82: 296

[23] Bradstreet B J. Weld J, 1968; 47: 314

[24] Gratzke U, Kapadia P D, Dowden J, Kroos J, Simon G. J Phys, 1992; 25D: 1640

[25] Kumar A, Debroy T. Weld J, 2006; 85: 292

[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[6] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[7] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[10] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[11] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[12] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[13] Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 945-955.
[14] Dongsong RONG,Yong JIANG,Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1516-1522.
[15] Yawei PENG,Jianming GONG,Dongsong RONG,Yong JIANG,Minghui FU,Guo YU. NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1500-1506.
No Suggested Reading articles found!