Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1116-1122    DOI: 10.3724/SP.J.1037.2012.00081
论文 Current Issue | Archive | Adv Search |
LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE
LUO Xinmin1), ZHAO Guangzhi1),  ZHANG Yongkang2), CHEN Kangmin1, 3),  LUO Kaiyu2), REN Xudong2)
1) School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013
2) School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013
3) Analysis and Test Center, Jiangsu University, Zhenjiang 212013
Cite this article: 

LUO Xinmin ZHAO Guangzhi ZHANG Yongkang CHEN Kangmin LUO Kaiyu REN Xudong. LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE. Acta Metall Sin, 2012, 48(9): 1116-1122.

Download:  PDF(5751KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Laser shock processing (LSP) is an effective and promising technology for improving surface mechanical properties of metals. The study of the strain behavior of individual phase of advanced engineering materials with polycrystalline and dual-phase microstructures subjected to laser shock processing is an important emerging frontier, which facilitates understanding of the relative roles of intrinsic and extrinsic attributes of microstructure upon strengthening, compared with the strengthening process of metals at the macroscopic scale of deformation. The influence of LSP on the surface layer properties and microstructures of a Ti-6Al-4V alloy has been investigated focusing on the microstructure response of the surface layer of the alloy by means of high efficient Nd3+∶YAG ceramic pulse laser with 12.5 J per pulse at 1064 nm and 10 Hz repetition rate. The microstructures response of the alloy are analyzed and characterized with by FE-SEM, TEM and the inverse fast fourier transform (IFFT) algorithm, respectively. The experimental results show that the surface hardness of the laser shocked Ti-6Al-4V alloy can increase 80%, and the compressive residual stress can be over\linebreak 500 MPa. Obvious preference effect between α and β phase is discovered upon strengthening of the alloy under the conditions of the ultra high energy and ultra-high strain rate of laser shock. With the lower shock energy, the deformation strengthening of β phase takes precedence over the other; as the shock energy increasing, both α and β are strengthened simultaneously, whereas, the previously strengthened β phase shows saturated strengthening effect. The results also reveal that dislocation multiplication is the main strengthen mechanism in the laser shocked region, including oriented dislocation projection and dislocation dipoles in the α phase with hcp crystal lattice, but diversified configurations, such as edge-dislocation, extended dislocations and dislocation dipoles presenting in the β phase with bcc crystal lattice. The semi-coherent interface with misfit dislocations between α and β phase boundary is discovered, which plays a synergetic role upon deformation strengthening. Additionally, the strain screening manifestation within the laser shocked region is also discussed, which is regarded as a kind of self-organization phenomenon of deformation defects, and can be attributed to the synthetic effect of the confinement conditions upon laser shocking, the accumulative strengthening mode of single-spot laser shocking process and the differences of strength and crystalline structure between the lamellar α and β phases.
Key words:  laser shock processing      material response      Ti-based alloy      surface strengthening      microstructure     
Received:  17 February 2012     
ZTFLH: 

TN249

 
  TG146.2+3

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50735001, 50905080 and 51105179)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00081     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1116

[1] Zhong M L, Fan P X. Chin J Lasers, 2011; 38: 0601001–1

(钟敏霖, 范培迅. 中国激光, 2011; 38: 0601001-1)

[2] Zhong M L, Liu W J. Chin J Lasers, 2008; 35: 1653

(钟敏霖, 刘文今. 中国激光, 2008; 35: 1653)

[3] Zhou J Z, Fan Y J, Huang S, Ruan H Y, Zhu W, Wei D H, Wang C D, Chen H S. Chin J Lasers, 2011; 38: 0601003–1

(周建忠, 樊玉杰, 黄 舒, 阮鸿雁, 朱 伟, 卫登辉, 王呈栋, 陈寒松. 中国激光, 2011; 38: 0601003-1)

[4] Huang Y G, Liu S B. Chin J Lasers, 2009; 36: 3133

(黄永光, 刘世炳. 中国激光, 2009; 36: 3133)

[5] Luo X M, Zhang J W, Ma H, Zhang Y K, Chen K M, Ren X D, Luo K Y. Acta Optica Sin, 2011; 31: 714002–1

(罗新民, 张静文, 马辉, 张永康, 陈康敏, 任旭东, 罗开玉. 光学学报, 2011; 31: 714002-1)

[6] Xu H Y, Zou S K, Che Z G, Cao Z W. Chin J Lasers, 2011; 38: 0303002–1

(许海鹰, 邹世坤, 车志刚, 曹子文. 中国激光, 2011; 38: 0303002--)

[7] Zhang Y K, Zhou L C, Ren X D. J Jiangsu Univ (Nat Sci Ed), 2009; 30(1): 10

(张永康, 周立春, 任旭东. 江苏大学学报(自然科学版), 2009; 30(1): 10)

[8] Trdan U, Grum J, Hill M R. Mater Sci Forum, 2011; 681: 480

[9] Zou S K, Gong S L, Guo E M, Li B. Chin J Lasers, 2011; 38: 0601009–1

(邹世坤, 巩水利, 郭恩明, 李斌. 中国激光, 2011; 38: 0601009-1)

[10] Ren X D, Zhang Y K, Zhou J Z, Ma Z. J Huazhong Univ Sci Technol (Nat Sci Ed), 2007; 35(3): 150

(任旭东, 张永康, 周建忠, 马壮. 华中科技大学学报(自然科学版), 2007; 35(3): 150)

[11] Hu Y X, Yao Z Q. Acta Metall Sin (Engl Lett), 2008; 21: 125

[12] Li P, Li S X, Wang Z G. Prog Mater Sci, 2011; 56: 328

[13] Zhang Y K, Pei X, Chen J F, Gu Y Y, Ren A G, You J. Acta Optica Sin, 2010; 30: 2613

(张永康, 裴旭, 陈菊芳, 顾永玉, 任爱国, 尤建. 光学学报, 2010; 30: 2613)

[14] Guo N G, Luo X M, Hua Y Q. Mater Rev, 2006; 20(6): 10

(郭乃国, 罗新民, 花银群. 材料导报, 2006; 20(6): 10)

[15] Zhang W, Sui M L, Zhou Y Z, He G H, Guo J D, Li D X. Acta Metall Sin, 2003; 39: 1009

(张伟, 隋曼龄, 周亦胄, 何冠虎, 郭敬东, 李斗星. 金属学报, 2003; 39: 1009)

[16] Luo X M, Zhang Y K, Chen K M, Ren X D. In: Slabe J M ed., Proc 8th Int Conf zIndustral Tools and Material Processing Technologies{, Ljubljana: Ljubljana University, 2011: 223

[17] Luo X M, Zhao G Z, Yuan C Z, Zhang Y K, Chen K M. In: BobWed., Proc ICMTMA 2011. Los Alamitos: IEEE Computer Society, 2011: 556

[18] Rozmus G M. Acta Phys Polonica, 2010; 117A: 808

[19] Christoph L, Manfred P. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim: WILEY– VCH Verlag GmbH & Co. KGaA, 2003: 1

[20] Tao C H, Liu Q Q, Cao C X, Zhang W F. Failure and Prevention of Aeronautical Titanium Alloy. Beijing: National Defense Industry Press, 2002: 11

(陶春虎, 刘庆瑔,曹春晓, 张卫方. 航空用钛合金的失效及其预防. 北京: 国防工业出版社, 2002: 11)

[21] Zou S K, Cao ZW, Liu F J. Chin J Lasers, 2007; 34(s1): 4

(邹世坤, 曹子文, 刘方军. 中国激光, 2007; 34(s1): 4)

[22] Zhang Y K, Ye Y X. Laser Optoelectronics Prog, 2009; (9): 32

(张永康, 叶云霞. 激光与光电子学进展, 2009; (9): 32)

[23] Gu Y Y, Zhang Y K, Zhang X Q, Shi J G. Acta Phys Sin. 2006; 55: 5885

(顾永玉, 张永康, 张兴权, 史建国. 物理学报, 2006; 55: 5885)

[24] Qu H, Liu W D, Liu Z L. Acta Metall Sin, 2006; 42: 374

(屈华, 刘伟东, 刘志林. 金属学报, 2006; 42: 374)

[25] Zhou Z M. Dislocation Configuration Evolution. Shenyang: Northeastern University Press, 2003: 60

(周志敏. 位错组态演化. 沈阳: 东北大学出版社, 2003: 60)

[26] Hu G X, Qian M G. Metallurgy. Shanghai: Shanghai Science and Technology Press, 1980: 63

(胡赓祥, 钱苗根. 金属学. 上海: 上海科学技术出版社, 1980: 63)

[27] Franek A, Kalus R, Kratochvil J. Philos Mag, 1991; 64A: 497

[28] L¨utjering G, Williams J C. Titanium. 2nd Ed., Heidelberg: Springer Verlag, 2007: 97

[29] Smallman R E, Ngan A H W. Physical Metallurgy and Advanced Materials. 7th Ed., Burlington: Elsevier Ltd. 2007: 92

[30] Luo X M, Ma H, Zhang J W, Zhang Y K. Mater Rev, 2010; 20(3): 11

(罗新民, 马辉, 张静文, 张永康. 材料导报, 2010; 20(3): 11)

[31] Shao J L, Qin C S, Wang P, Zhang G C, He A M. Acta Mech Solid Sin, 2009; 30: 226

(邵建立, 秦承森, 王裴, 张广财, 何安民. 固体力学学报, 2009; 30: 226)

[32] Luo G. Master thesis, Nanjing Aeronautic and Astronautic University, 2010

(罗刚. 南京航空航天大学硕士学位论文, 2010)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!