Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1116-1122    DOI: 10.3724/SP.J.1037.2012.00081
论文 Current Issue | Archive | Adv Search |
LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE
LUO Xinmin1), ZHAO Guangzhi1),  ZHANG Yongkang2), CHEN Kangmin1, 3),  LUO Kaiyu2), REN Xudong2)
1) School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013
2) School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013
3) Analysis and Test Center, Jiangsu University, Zhenjiang 212013
Download:  PDF(5751KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Laser shock processing (LSP) is an effective and promising technology for improving surface mechanical properties of metals. The study of the strain behavior of individual phase of advanced engineering materials with polycrystalline and dual-phase microstructures subjected to laser shock processing is an important emerging frontier, which facilitates understanding of the relative roles of intrinsic and extrinsic attributes of microstructure upon strengthening, compared with the strengthening process of metals at the macroscopic scale of deformation. The influence of LSP on the surface layer properties and microstructures of a Ti-6Al-4V alloy has been investigated focusing on the microstructure response of the surface layer of the alloy by means of high efficient Nd3+∶YAG ceramic pulse laser with 12.5 J per pulse at 1064 nm and 10 Hz repetition rate. The microstructures response of the alloy are analyzed and characterized with by FE-SEM, TEM and the inverse fast fourier transform (IFFT) algorithm, respectively. The experimental results show that the surface hardness of the laser shocked Ti-6Al-4V alloy can increase 80%, and the compressive residual stress can be over\linebreak 500 MPa. Obvious preference effect between α and β phase is discovered upon strengthening of the alloy under the conditions of the ultra high energy and ultra-high strain rate of laser shock. With the lower shock energy, the deformation strengthening of β phase takes precedence over the other; as the shock energy increasing, both α and β are strengthened simultaneously, whereas, the previously strengthened β phase shows saturated strengthening effect. The results also reveal that dislocation multiplication is the main strengthen mechanism in the laser shocked region, including oriented dislocation projection and dislocation dipoles in the α phase with hcp crystal lattice, but diversified configurations, such as edge-dislocation, extended dislocations and dislocation dipoles presenting in the β phase with bcc crystal lattice. The semi-coherent interface with misfit dislocations between α and β phase boundary is discovered, which plays a synergetic role upon deformation strengthening. Additionally, the strain screening manifestation within the laser shocked region is also discussed, which is regarded as a kind of self-organization phenomenon of deformation defects, and can be attributed to the synthetic effect of the confinement conditions upon laser shocking, the accumulative strengthening mode of single-spot laser shocking process and the differences of strength and crystalline structure between the lamellar α and β phases.
Key words:  laser shock processing      material response      Ti-based alloy      surface strengthening      microstructure     
Received:  17 February 2012     
ZTFLH: 

TN249

 
  TG146.2+3

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50735001, 50905080 and 51105179)

Cite this article: 

LUO Xinmin ZHAO Guangzhi ZHANG Yongkang CHEN Kangmin LUO Kaiyu REN Xudong. LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE. Acta Metall Sin, 2012, 48(9): 1116-1122.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00081     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1116

[1] Zhong M L, Fan P X. Chin J Lasers, 2011; 38: 0601001–1

(钟敏霖, 范培迅. 中国激光, 2011; 38: 0601001-1)

[2] Zhong M L, Liu W J. Chin J Lasers, 2008; 35: 1653

(钟敏霖, 刘文今. 中国激光, 2008; 35: 1653)

[3] Zhou J Z, Fan Y J, Huang S, Ruan H Y, Zhu W, Wei D H, Wang C D, Chen H S. Chin J Lasers, 2011; 38: 0601003–1

(周建忠, 樊玉杰, 黄 舒, 阮鸿雁, 朱 伟, 卫登辉, 王呈栋, 陈寒松. 中国激光, 2011; 38: 0601003-1)

[4] Huang Y G, Liu S B. Chin J Lasers, 2009; 36: 3133

(黄永光, 刘世炳. 中国激光, 2009; 36: 3133)

[5] Luo X M, Zhang J W, Ma H, Zhang Y K, Chen K M, Ren X D, Luo K Y. Acta Optica Sin, 2011; 31: 714002–1

(罗新民, 张静文, 马辉, 张永康, 陈康敏, 任旭东, 罗开玉. 光学学报, 2011; 31: 714002-1)

[6] Xu H Y, Zou S K, Che Z G, Cao Z W. Chin J Lasers, 2011; 38: 0303002–1

(许海鹰, 邹世坤, 车志刚, 曹子文. 中国激光, 2011; 38: 0303002--)

[7] Zhang Y K, Zhou L C, Ren X D. J Jiangsu Univ (Nat Sci Ed), 2009; 30(1): 10

(张永康, 周立春, 任旭东. 江苏大学学报(自然科学版), 2009; 30(1): 10)

[8] Trdan U, Grum J, Hill M R. Mater Sci Forum, 2011; 681: 480

[9] Zou S K, Gong S L, Guo E M, Li B. Chin J Lasers, 2011; 38: 0601009–1

(邹世坤, 巩水利, 郭恩明, 李斌. 中国激光, 2011; 38: 0601009-1)

[10] Ren X D, Zhang Y K, Zhou J Z, Ma Z. J Huazhong Univ Sci Technol (Nat Sci Ed), 2007; 35(3): 150

(任旭东, 张永康, 周建忠, 马壮. 华中科技大学学报(自然科学版), 2007; 35(3): 150)

[11] Hu Y X, Yao Z Q. Acta Metall Sin (Engl Lett), 2008; 21: 125

[12] Li P, Li S X, Wang Z G. Prog Mater Sci, 2011; 56: 328

[13] Zhang Y K, Pei X, Chen J F, Gu Y Y, Ren A G, You J. Acta Optica Sin, 2010; 30: 2613

(张永康, 裴旭, 陈菊芳, 顾永玉, 任爱国, 尤建. 光学学报, 2010; 30: 2613)

[14] Guo N G, Luo X M, Hua Y Q. Mater Rev, 2006; 20(6): 10

(郭乃国, 罗新民, 花银群. 材料导报, 2006; 20(6): 10)

[15] Zhang W, Sui M L, Zhou Y Z, He G H, Guo J D, Li D X. Acta Metall Sin, 2003; 39: 1009

(张伟, 隋曼龄, 周亦胄, 何冠虎, 郭敬东, 李斗星. 金属学报, 2003; 39: 1009)

[16] Luo X M, Zhang Y K, Chen K M, Ren X D. In: Slabe J M ed., Proc 8th Int Conf zIndustral Tools and Material Processing Technologies{, Ljubljana: Ljubljana University, 2011: 223

[17] Luo X M, Zhao G Z, Yuan C Z, Zhang Y K, Chen K M. In: BobWed., Proc ICMTMA 2011. Los Alamitos: IEEE Computer Society, 2011: 556

[18] Rozmus G M. Acta Phys Polonica, 2010; 117A: 808

[19] Christoph L, Manfred P. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim: WILEY– VCH Verlag GmbH & Co. KGaA, 2003: 1

[20] Tao C H, Liu Q Q, Cao C X, Zhang W F. Failure and Prevention of Aeronautical Titanium Alloy. Beijing: National Defense Industry Press, 2002: 11

(陶春虎, 刘庆瑔,曹春晓, 张卫方. 航空用钛合金的失效及其预防. 北京: 国防工业出版社, 2002: 11)

[21] Zou S K, Cao ZW, Liu F J. Chin J Lasers, 2007; 34(s1): 4

(邹世坤, 曹子文, 刘方军. 中国激光, 2007; 34(s1): 4)

[22] Zhang Y K, Ye Y X. Laser Optoelectronics Prog, 2009; (9): 32

(张永康, 叶云霞. 激光与光电子学进展, 2009; (9): 32)

[23] Gu Y Y, Zhang Y K, Zhang X Q, Shi J G. Acta Phys Sin. 2006; 55: 5885

(顾永玉, 张永康, 张兴权, 史建国. 物理学报, 2006; 55: 5885)

[24] Qu H, Liu W D, Liu Z L. Acta Metall Sin, 2006; 42: 374

(屈华, 刘伟东, 刘志林. 金属学报, 2006; 42: 374)

[25] Zhou Z M. Dislocation Configuration Evolution. Shenyang: Northeastern University Press, 2003: 60

(周志敏. 位错组态演化. 沈阳: 东北大学出版社, 2003: 60)

[26] Hu G X, Qian M G. Metallurgy. Shanghai: Shanghai Science and Technology Press, 1980: 63

(胡赓祥, 钱苗根. 金属学. 上海: 上海科学技术出版社, 1980: 63)

[27] Franek A, Kalus R, Kratochvil J. Philos Mag, 1991; 64A: 497

[28] L¨utjering G, Williams J C. Titanium. 2nd Ed., Heidelberg: Springer Verlag, 2007: 97

[29] Smallman R E, Ngan A H W. Physical Metallurgy and Advanced Materials. 7th Ed., Burlington: Elsevier Ltd. 2007: 92

[30] Luo X M, Ma H, Zhang J W, Zhang Y K. Mater Rev, 2010; 20(3): 11

(罗新民, 马辉, 张静文, 张永康. 材料导报, 2010; 20(3): 11)

[31] Shao J L, Qin C S, Wang P, Zhang G C, He A M. Acta Mech Solid Sin, 2009; 30: 226

(邵建立, 秦承森, 王裴, 张广财, 何安民. 固体力学学报, 2009; 30: 226)

[32] Luo G. Master thesis, Nanjing Aeronautic and Astronautic University, 2010

(罗刚. 南京航空航天大学硕士学位论文, 2010)
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
No Suggested Reading articles found!