Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1123-1131    DOI: 10.3724/SP.J.1037.2012.00107
论文 Current Issue | Archive | Adv Search |
HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY
YU Hui1, 2),  KIM Youngmin2), YU Huashun1), YOU Bongsun2),  MIN Guanghui1)
1) Key Laboratory for Liquid--Solid Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061
2) ALMG research group, Light metal division, Korea Institute of Materials Science, Changwon 642831, Republic of Korea
Cite this article: 

YU Hui KIM Youngmin YU Huashun YOU Bongsun MIN Guanghui. HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY. Acta Metall Sin, 2012, 48(9): 1123-1131.

Download:  PDF(3331KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hot deformation behavior of the T4-treated Mg-6Zn-0.5Zr-0.5Ce alloy was investigated by compressive test using Gleeble 3800 thermal--simulator in the temperature range of 523-673 Kand strain rate range of 0.001-1.0 s-1. The results show that the flow stress is significantly affected by both deformation temperature and strain rate. The flow stress increases with either decreasing deformation temperature or increasing strain rate. The flow stress value tends to be constant after a peak value appearing at high deformation temperature and low strain rate. In the present work, the average activation energy for the hot deformation has been determinded to be 145.76 kJ/mol using the hyperbolic sine constitutive equation. A feed-forward back-propagation artificial neural network (ANN) has been established and used to investigate the flow behaviors of the alloy. The predicted data by the ANN is in good agreement with the experimental ones. Combing microstructure observation, the processing map for this alloy established on the basis of a dynamic material model indicates that the dynamic recrystallization (DRX) would take place in the range of 648-673 K and 0.1-1.0 s-1, while under the same strain rate the flow instability would occur due to mechanical twinning when the temperature below 573 K. The formation of interfaces depends on the process of mechanical recovery caused by cross-slip of screw dislocations. The DRX model indicates that DRX of this alloy is controlled by interface migration.
Key words:  Mg-based alloy      constitutive equation      flow stress      artificial neural network      dynamic recrystallization      processing map     
Received:  28 February 2012     
ZTFLH: 

TG146.22

 
Fund: 

Supported by Fund of China Scholarship Council (No.2010622106) and the World Premier Materials Program funded by The Ministry of Knowledge Economy, Republic of Korea (No.PMI7300)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00107     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1123

[1] Luo A A, Mishra R K, Sachdev A K. Scr Mater, 2011; 64: 410

[2] Yu K, LiWX, Zhao J,Ma Z Q, Wang R. Scr Mater, 2003; 48: 1319

[3] Qin Y J, Pan Q L, He Y B, LiWB, Liu X Y, Fan X. Acta Metall Sin, 2009; 45: 887

(覃银江, 潘清林, 何运斌, 李文斌, 刘晓艳, 范曦. 金属学报, 2009; 45: 887)

[4] Wang Z X, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 1378

(王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)

[5] Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096

(唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)

[6] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562

[7] Chino Y, Kado M, Mabuchi M. Acta Mater, 2008; 56: 387

[8] Zhou H T, Zeng X Q, Liu L F, Zhang Y, Zhu Y P, Ding W J. J Mater Sci, 2004; 39: 7061

[9] Xia C Q, Wang Y N, Wu A R, Gu Y. J Cent South Univ Technol, 2005; 12: 515

[10] Luo Z P, Song D Y, Zhang S Q. J Alloys Compd, 1995; 230: 109

[11] Zhao K Y, Peng X D, Xie W D, Wei Q Y, Yang Y, Wei G B. Trans Nonferrous Met Soc China, 2010; 20(suppl): s324

[12] Ma C, Liu M, Wu G, Ding W, Zhu Y. Mater Sci Eng, 2003; A349: 207

[13] Zhang D F, Qi F G, Lan W, Shi G L, Zhao X B. Trans Nonferrous Met Soc China, 2011; 21: 703

[14] Fan Y, Wu G H, Zhai C Q. Mater Sci Eng, 2006; A433: 208

[15] Qin Y J, Pan Q L, He Y B, Li W B, Liu X Y, Fan X. Mater Manuf Process, 2010; 25: 539

[16] Chun M S, Biglou J, Lenard J G, Kim J G. J Mater Process Technol, 1998; 86: 245

[17] Reddy N S, Lee Y H, Park C H, Lee C S. Mater Sci Eng, 2008; A492: 276

[18] Bariani P F, Bruschi S, Negro T D. J Mater Process Technol, 2004; 152: 395

[19] Bahrami A, Anijdan S H M, Hosseini H R M, Shafyei A, Narimani R. Comput Mater Sci, 2005; 34: 335

[20] Chen Z Y, Li Z Q, Yu C. Mater Sci Eng, 2011; A528: 961

[21] Peng W P, Li P J, Zeng P, Lei L P. Mater Sci Eng, 2008; A494: 173

[22] Poletti C, Dieringa H, Warchomicka F. Mater Sci Eng, 2009; A516: 138

[23] Prasad Y V R K. J Mater Eng Perform, 2003; 12: 638

[24] Slooff F A, Dzwonczyk J S, Zhou J, Duszczyk J, Katgerman L. Mater Sci Eng, 2010; A527: 735

[25] Wang C Y, Wang X J, Chang H, Wu K, ZhengMY. Mater Sci Eng, 2007; A464: 52

[26] Wang Y, Zhang Y, Zeng X, Ding W. J Mater Sci, 2006; 41: 3603

[27] Zhou H T, Li Q B, Zhao Z K, Liu Z C,Wen S F, Wang Q D. Mater Sci Eng, 2010; A527: 2022

[28] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127

[29] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43

[30] Deng Y, Yin Z M, Huang J W. Mater Sci Eng, 2011; A528: 1780

[31] Galiyev A, Kaibyshev R, Gottstein G. Acta Mater, 2001; 49: 1199

[32] Ma M L, Zhang K, Li X G, Li Y J, Zhang K. Trans Nonferrous Met Soc, 2008; 18(Suppl): s132

[33] Zhu Y C, Zeng W D, Sun Y, Feng F, Zhou Y G. Comput Mater Sci, 2011; 50: 1785

[34] Ju Q, Li D G, Liu G Q. Acta Metall Sin, 2006; 42: 218

(鞠 \ \ 泉, 李殿国, 刘国权. 金属学报, 2006; 42: 218)

[35] Ravichandran N. J Mater Eng Perform, 2003; 12: 653

[36] Derby B. Scr Metall Mater, 1992; 27: 1581
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[8] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[9] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[10] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[11] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[12] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[13] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[14] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[15] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
No Suggested Reading articles found!