|
|
EFFECTS OF HOT FORGING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF TG6 HIGH TEMPERATURE TITANIUM ALLOY |
WANG Tao, GUO Hongzhen, ZHANG Yongqiang, YAO Zekun, TAN Lijun |
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 |
|
Cite this article:
WANG Tao GUO Hongzhen ZHANG Yongqiang YAO Zekun TAN Lijun. EFFECTS OF HOT FORGING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF TG6 HIGH TEMPERATURE TITANIUM ALLOY. Acta Metall Sin, 2010, 46(8): 913-920.
|
Abstract Near–isothermal forging experiments of the TG6 titanium alloy have been conducted at the deformation temperatures ranging from 850 to 1075 ℃with a constant strain rate and deformation degree. The primary α phase content in the alloy after solution, deformation and heat treatment, and the thickness of lamellar α phase in the alloy after heat treatment were measured by OM and image analyzer. The results show that compared to solution state, both forging and forging + heat treatment cause the decrease or increase of primary α phase content when forging temperatures are below or over 1000 ℃. The thickness of the lamellar α phase increases with the increase of forging temperature, which is caused by the decrease of nucleation density of secondary α phase. The β phase grains are so big when the forging temperature is 1075 ℃, while their microstructures are non–uniform. The room temperature and 600℃ tensile properties, impact property and fracture toughness of TG6 alloy have also been measured. It is found that the tensile strength of the TG6 alloy is not very sensitive to forging temperature. The plasticity decreases but the fracture toughness increases with the increase of forging temperature. There is no obvious change in the impact toughness when forging in the α and β double phase field, however it decreases when forging temperature is near the β transformation temperature. The change in mechanical property was explained by SEM, TEM and OM experiments.
|
Received: 21 December 2009
|
[1] Bania P J. J Met, 1988; 3: 20
[2] Harry Chandler. Heat Treaters’s Guide: Practices and Procedures for Nonferrous Alloys. Ohio: ASM International, 1996: 511
[3] Tetyukhin V. In: Blenkinsop P A, Evans W J, Flower H M, es., Titanium’95: Science and Technoogy, Cambridge, UK: Cambridge University Press, 1996: 2430
[4] Cai J M, Li Z X, Ma J M, Huang X, Cao C X. Mater Rev, 2005; 19: 50
(蔡建明, 李臻熙, 马济民, 黄旭, 曹春晓. 材料导报, 2005; 19: 50)
[5] Zhang J, Li D. The 2 Phase In The High Temperature Titanium. Shenyang: Northeast University Press, 2002: 8
(张均, 李东. 高温钛合金中的$\alpha_{2}$相. 沈阳: 东北大学出版社, 2002: 8)
[6] Weiss I, Semiatin S L. Mater Sci Eng, 1998; A243: 46
[7] Sauer C, Luetjering G. J Mater Process Technol, 2001; 117: 311
[8] Guo H Z, Yao Z K, Feng C, Su Z W. Rare Met Mater Eng, 2003; 32: 566
(郭鸿镇, 姚泽坤, 冯 超, 苏祖武. 稀有金属材料与工程, 2003; 32: 566)
[9] Ma F C, Lu W J, Qin J N, Zhang D. Mater Sci Eng, 2006; A416: 59
[10] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Application. Beijing: Chemical Industry Press, 2005: 177
(张喜燕, 赵永庆, 白晨光. 钛合金及应用. 北京: 化学工业出版社, 2005: 177)
[11] Zhou Y G, Zeng W D, Yu H Q. Mater Sci Eng, 2005; A393: 204
[12] Zhou Y G, Zeng W D, Yu H Q. Eng Sci, 2001; 3(5): 61
(周义刚, 曾卫东, 俞汉清. 中国工程科学, 2001; 3(5): 61)
[13] Yang Y, Xu F, Huang A J, Li G P. Acta Metall Sin, 2005; 41: 713
(杨义, 徐锋, 黄爱军, 李阁平. 金属学报, 2005; 41: 713)
[14] Wang X Y, Liu J R, Lei J F, Cao M Z, Liu Y Y. Acta Metall Sin, 2007; 43: 1129
(王晓燕, 刘建荣, 雷家峰, 曹名洲, 刘羽寅. 金属学报, 2007; 43:1129)
[15] Sun Z C, Yang H. Mater Sci Eng, 2009; A523: 184
[16] Kong F T, Chen Y Y, Li B H. Acta Metall Sin, 2008; 44: 815
(孔凡涛, 陈玉勇, 李宝辉. 金属学报, 2008; 44: 815)
[17] Terlinde G, Luetjering G. Metall Trans, 1982; 13A: 1283
[18] Duan R, Cai J M, Li Z X. J Aeronaut Mater, 2007; 27(3): 17
(段锐, 蔡建明, 李臻熙. 航空材料学报, 2007; 27(3): 17)
[19] Chu M Y, Hui S X, Zhang Z, Shen J Y. J Chin Electron Microsc Soc, 2004; 23: 168
(储茂友, 惠松骁, 张翥, 沈剑韵. 电子显微学报, 2004; 23: 168)
[20] Xu F, Li G P, Yang R. Acta Metall Sin, 2006; 42: 770
(徐锋, 李阁平, 杨锐. 金属学报, 2006; 42: 770)
[21] Cui Y X, Wang C L. Fractograph Analysis of Metal. Harbin: Harbin Institute of Technology Press, 1998: 39
(崔约贤, 王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 39)
[22] Filip R, Kubiak K, ZiajaW, Sieniawski J. J Mater Process Technol, 2003; 133: 84 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|