Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 913-920    DOI: 10.3724/SP.J.1037.2009.00851
论文 Current Issue | Archive | Adv Search |
EFFECTS OF HOT FORGING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF TG6 HIGH TEMPERATURE TITANIUM ALLOY
WANG Tao, GUO Hongzhen, ZHANG Yongqiang, YAO Zekun, TAN Lijun
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

WANG Tao GUO Hongzhen ZHANG Yongqiang YAO Zekun TAN Lijun. EFFECTS OF HOT FORGING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF TG6 HIGH TEMPERATURE TITANIUM ALLOY. Acta Metall Sin, 2010, 46(8): 913-920.

Download:  PDF(2519KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Near–isothermal forging experiments of the TG6 titanium alloy have been conducted at the deformation temperatures ranging from 850 to 1075 ℃with a constant strain rate and deformation degree. The primary α phase content in the alloy after solution, deformation and heat treatment, and the thickness of lamellar α phase in the alloy after heat treatment were measured by OM and image analyzer. The results show that compared to solution state, both forging and forging + heat treatment cause the decrease or increase of primary α phase content when forging temperatures are below or over 1000 ℃. The thickness of the lamellar α phase increases with the increase of forging temperature, which is caused by the decrease of nucleation density of secondary α phase. The β phase grains are so big when the forging temperature is 1075 ℃, while their microstructures are non–uniform. The room temperature and 600℃ tensile properties, impact property and fracture toughness of TG6 alloy have also been measured. It is found that the tensile strength of the TG6 alloy is not very sensitive to forging temperature. The plasticity decreases but the fracture toughness increases with the increase of forging temperature. There is no obvious change in the impact toughness when forging in the α and β double phase field, however it decreases when forging temperature is near the β transformation temperature. The change in mechanical property was explained by SEM, TEM and OM experiments.

Key words:  high temperature titanium alloy      near-isothermal forging      microstructure      mechanical property     
Received:  21 December 2009     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00851     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/913

[1] Bania P J. J Met, 1988; 3: 20 [2] Harry Chandler. Heat Treaters’s Guide: Practices and Procedures for Nonferrous Alloys. Ohio: ASM International, 1996: 511 [3] Tetyukhin V. In: Blenkinsop P A, Evans W J, Flower H M, es., Titanium’95: Science and Technoogy, Cambridge, UK: Cambridge University Press, 1996: 2430 [4] Cai J M, Li Z X, Ma J M, Huang X, Cao C X. Mater Rev, 2005; 19: 50 (蔡建明, 李臻熙, 马济民, 黄旭, 曹春晓. 材料导报, 2005; 19: 50) [5] Zhang J, Li D. The 2 Phase In The High Temperature Titanium. Shenyang: Northeast University Press, 2002: 8 (张均, 李东. 高温钛合金中的$\alpha_{2}$相. 沈阳: 东北大学出版社, 2002: 8) [6] Weiss I, Semiatin S L. Mater Sci Eng, 1998; A243: 46 [7] Sauer C, Luetjering G. J Mater Process Technol, 2001; 117: 311 [8] Guo H Z, Yao Z K, Feng C, Su Z W. Rare Met Mater Eng, 2003; 32: 566 (郭鸿镇, 姚泽坤, 冯 超, 苏祖武. 稀有金属材料与工程, 2003; 32: 566) [9] Ma F C, Lu W J, Qin J N, Zhang D. Mater Sci Eng, 2006; A416: 59 [10] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Application. Beijing: Chemical Industry Press, 2005: 177 (张喜燕, 赵永庆, 白晨光. 钛合金及应用. 北京: 化学工业出版社, 2005: 177) [11] Zhou Y G, Zeng W D, Yu H Q. Mater Sci Eng, 2005; A393: 204 [12] Zhou Y G, Zeng W D, Yu H Q. Eng Sci, 2001; 3(5): 61 (周义刚, 曾卫东, 俞汉清. 中国工程科学, 2001; 3(5): 61) [13] Yang Y, Xu F, Huang A J, Li G P. Acta Metall Sin, 2005; 41: 713 (杨义, 徐锋, 黄爱军, 李阁平. 金属学报, 2005; 41: 713) [14] Wang X Y, Liu J R, Lei J F, Cao M Z, Liu Y Y. Acta Metall Sin, 2007; 43: 1129 (王晓燕, 刘建荣, 雷家峰, 曹名洲, 刘羽寅. 金属学报, 2007; 43:1129) [15] Sun Z C, Yang H. Mater Sci Eng, 2009; A523: 184 [16] Kong F T, Chen Y Y, Li B H. Acta Metall Sin, 2008; 44: 815 (孔凡涛, 陈玉勇, 李宝辉. 金属学报, 2008; 44: 815) [17] Terlinde G, Luetjering G. Metall Trans, 1982; 13A: 1283 [18] Duan R, Cai J M, Li Z X. J Aeronaut Mater, 2007; 27(3): 17 (段锐, 蔡建明, 李臻熙. 航空材料学报, 2007; 27(3): 17) [19] Chu M Y, Hui S X, Zhang Z, Shen J Y. J Chin Electron Microsc Soc, 2004; 23: 168 (储茂友, 惠松骁, 张翥, 沈剑韵. 电子显微学报, 2004; 23: 168) [20] Xu F, Li G P, Yang R. Acta Metall Sin, 2006; 42: 770 (徐锋, 李阁平, 杨锐. 金属学报, 2006; 42: 770) [21] Cui Y X, Wang C L. Fractograph Analysis of Metal. Harbin: Harbin Institute of Technology Press, 1998: 39 (崔约贤, 王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 39) [22] Filip R, Kubiak K, ZiajaW, Sieniawski J. J Mater Process Technol, 2003; 133: 84
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!