Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 921-929    DOI: 10.3724/SP.J.1037.2010.00027
论文 Current Issue | Archive | Adv Search |
PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY
KE Changbo, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
Cite this article: 

KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY. Acta Metall Sin, 2010, 46(8): 921-929.

Download:  PDF(2412KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The presence and distribution of Ni4Ti3 particles in NiTi alloys have a significant influence on martensitic phase transformation path by favoring the formation of R–phase rather than B19’ phase since the latter produces larger lattice deformation. To deeply understand the above, some experimental studies have been done by using differential scanning calorimetry (DSC) and in situ transmission electron microscopy (TEM). Meanwhile, some preliminary simulations have also been performed focusing on the morphology evolution of single and multiple Ni4Ti3 variants in single NiTi alloy system as well as considering the effect of external loads on selective precipitate growth. Whereas, in engineering application, the NiTi alloys often undergo the external load which may affect the growth kinetics of Ni4Ti3 precipitates. Therefore, it is necessary to investigate the effect of applied load on growth kinetics of Ni4Ti3 precipitates. In this paper, the phase field method has been extended to study the microstructure evolution and growth kinetics of Ni4Ti3 precipitates in NiTi alloys during zero–stress and stress–assisted aging. The simulation results show that during stress–free aging, four groups of the variants precipitate along the corresponding (111)B2 habit plane; when the NiTi matrix is under <111>B2 comprssive stress–assisted aging, there is only one group of the variants with the normal lines parallel to <111>B2 to be precipitated. Although the uniaxial compressive stress apparently promotes the nucleation and slightly accelerates the growth of Ni4Ti3 variants in each group, the trends of aging time dependences of the area fraction, variant length, variant width and length–width ratio seem unchanged. The larger stresses can cause length and width of the variant slightly larger, but the area fraction of the Ni4Ti3 particles increases with increasing stress level. The simulation results are in good coincidence with the experimental results available.

Key words:  NiTi shape memory alloy      Ni4Ti3 precipitate      kinetics      phase field approach      applied external stress     
Received:  14 January 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos. 50871039 and 50801029) and Chinese Government Graduate Student Overseas Study Program (No.2008615024)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00027     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/921

[1] Allafi J K, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255 [2] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525 [3] Moore K T, Howe J M. Acta Mater, 2000; 48: 4083 [4] Bosze W P, Trivedi R. Metall Trans, 1974; 5: 511 [5] Enomoto M, Aaronson H I. Scr Metall, 1989; 23: 55 [6] Enomoto M, Hirth J P. Metall Mater Trans, 1996; 27A: 1491 [7] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46:84 (柯常波, 马骁, 张新平. 金属学报. 2010; 46:84) [8] Dlouhy A, Allafi J K, Eggeler G. Philos Mag, 2003; 83: 339 [9] Michutta J, Carrol M C, Yawny A, Somsen C, Neuking K, Eggeler G. Mater Sci Eng, 2004; A378: 152 [10] Li D Y, Chen L Q. Acta Mater, 1996; 45: 2435 [11] Li D Y, Chen L Q. Acta Mater, 1996; 45: 471 [12] Li D Y, Chen L Q. Acta Mater. 1997; 46: 639 [13] Khachaturyan A G. Theory of structural transformation in solid. New York: Wiley-Interscience, 1983: 213 [14] Wagner M F, Windl W. Acta Mater, 2008; 56: 6232 [15] Wagner M F, Windl W. Acta Mater, 2009; 60: 207 [16] Sharma S K, Macht M P, Naundorf V. Phys Rev, 1994; 49B: 6655 [17] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009;57: 316 [18] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023 [19] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1029 [20] Wang Y, Banerjee D, Su C C, Khachaturyan A G.. Acta Mater, 1998; 46: 2983 [21] Zhou N. PhD Thesis, The Ohio State University, 2008
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[7] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[8] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[9] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[10] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[11] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[12] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[13] Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. 金属学报, 2018, 54(8): 1187-1192.
[14] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[15] Ke ZHANG, Xinjun SUN, Mingya ZHANG, Zhaodong LI, Xiaoyu YE, Zhenghai ZHU, Zhenyi HUANG, Qilong YONG. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(8): 1122-1130.
No Suggested Reading articles found!