Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 907-912    DOI: 10.3724/SP.J.1037.2010.00130
论文 Current Issue | Archive | Adv Search |
THE RECRYSTALLIZATION OF Ni BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ417G
PENG Sheng, ZHOU Lanzhang, HOU Jieshan, GUO Jianting
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

PENG Sheng ZHOU Lanzhang HOU Jieshan GUO Jianting. THE RECRYSTALLIZATION OF Ni BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ417G. Acta Metall Sin, 2010, 46(8): 907-912.

Download:  PDF(2442KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

DZ417G is a directionally solidified (DS) superalloy developed for low–pressure blade applications in gas turbine engines. The crystallization microstructures of DZ417G samples caused by sand–blasting and machining were investigated. The tensile properties of the alloy after crystallization were tested at room temperature and 900 ℃and its stress–rupture performance was examined under conditions of 980 ℃/216 MPa and 760 ℃/725 MPa. The results show that after solution treatment equiaxed recrystallization grains form on the surface of specimens machined from directionally solidified alloy bars. After aging treatment, cellular recrystallization takes place on the surface of specimens pretreated by sand blasting. Both the yield strength and tensile strength at room temperature decrease after recrystallization, while those at 900 ℃ are slightly affected by recrystallization. The recrystallization depth increases after stress–rupture tests, which may be attributed to migration of recrystallization boundaries driven by high temperature and stress. For samples without recrystallization microstructure, the fracture mode is transgranular, which is controlled by the propagation rate of the cracks initiated both on surface and at inner microstructure discontinuities. While for samples with recrystallization microstructure, the cracks prefer to be initiated on transverse recrystallization grain boundaries and propagate along the recrystallization boundaries into the matrix, which may accelerate the propagation rate. TRF (transverse recrystallization area fraction) is a factor to evaluate the effect of recrystallization on the stress–ruptured performance. The stress–ruptured performance is decreased with the increase of TRF between 0 and 0.5. For samples with a TRF of 0.5, second cellular recrystallization forms in the first equiaxed recrystallization grain. The cracks initated at interfaces of
cellular microstructure have a high density, which impair the stress–ruptured performance of DZ417G alloy.

Key words:  directionally solidified superalloy      DZ417G      recrystallization      mechanical property     
Received:  15 March 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00130     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/907

[1] Wang D L, Li J B, Jin T, Yang S Q, Wei Z, Hu Z Q, Fu L Q. Acta Metall Sin, 2006; 42: 167
(王东林, 李家宝, 金涛, 杨胜群, 魏政, 胡壮麒, 付立群. 金属学报, 2006; 42: 167)
[2] Xie G, Wang L, Zhang J, Lou L H. Metall Mater Trans, 2008; 39A: 206
[3] Marsden P K. J Mater Sci, 1971; 6: 1038
[4] Wang L, Xie G, Zhang J, Lou L H. Scr Mater, 2006; 55: 457
[5] Porter A, Ralph B. J Mater Sci, 1981; 16: 707
[6] Bond S D, Martin J W. J Mater Sci, 1984; 19: 3867
[7] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1665
[8] Cox D C, Roebuck B, Rae C M F, Reed R C. Mater Sci Technol, 2003; 19: 440
[9] Zambaldi C, Roters F, Raabe D, Glatzel U. Mater Sci Eng, 2007; A454–455: 433
[10] Zhao Y,Wang L, Yu T, Ding H F. Rare Metall Mater Eng, 2008; 37: 1032
[11] Xiong J C, Li J R, Zhao J Q, Liu S Z, Dong J X. Acta Metall Sin, 2009; 45: 1232
(熊继春, 李嘉荣, 赵金乾, 刘世忠, 董建新. 金属学报, 2009; 45: 1232)
[12] Zhang B, Tao C H, Lu X, Liu C K, Hu C Y, Bai M Y. J Iron Steel Res Int, 2009; 16: 75
[13] Xie G, Zhang J, Lou L H. Scr Mater, 2008; 59: 858
[14] B¨urgel R, Portella P D, Preuhs J. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J, eds., Superalloys 2000, Seven Spring, PA: TMS, 2000: 229
[15] Gostic W J. US Pat, 5551999, 1996
[16] Mihalisin J R, Corrigan J, Gratti G M, Vogt R G. US Pat, 2002/0007877 A1, 2002
[17] Keiichi M. Euro Pat, 1036850 A1, 2000
[18] Zoltzer K, Lempenauer K, Fischmeister H. US Pat, 5294239, 1994
[19] Corrigan J, Vogt R G, Mihalisin J R, Schmiedeknecht D L. Euro Pat, 1038982 A1, 1999
[20] Salkeld R W, Field T T, Ault E A. US Pat, 5413648, 1995
[21] Okazaki M, Ohtera I, Harada Y. Metall Mater Trans, 2004; 35A: 535
[22] Zhang W F , Li Y J, Liu G Y, Zhao A G, Tao C H, Tian J F, Yao G. Eng Fail Anal, 2000; 11: 429
[23] Zhao Y, Wang L, Li H Y, Yu T, Liu Y. Rare Met, 2008; 27: 425
[24] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1671
[25] Li Y J, Zhang W F, Tao C H. J Mech Strength, 2006; 28: 135
(李运菊, 张卫方, 陶春虎. 机械强度, 2006; 28: 135)
[26] Li Y J, Tao C H, Zhang W F. Adv Eng Mater, 2007; 9: 867
[27] Xie G, Wang L, Zhang J, Lou L H. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Seven Spring, PA: TMS, 2008: 453
[28] Paul U, Sahm P R. Mater Sci Eng, 1993; A173: 49
[29] Guo J T, Yuan C, Yang H C, Lupinc V, Maldini M. Metall Mater Trans, 2001; 32A: 1103

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!