|
|
Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function |
CHEN Liqing1( ), LI Xing2, ZHAO Yang3, WANG Shuai1, FENG Yang1 |
1State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2Hefei Innovation Research Institute, Beihang University, Hefei 230012, China 3School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
|
Cite this article:
CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function. Acta Metall Sin, 2023, 59(8): 1015-1026.
|
Abstract Vibration and noise are considered as public hazards that can affect the daily life of people. The use of additional sound insulation devices or curing of components by design can reduce certain vibration and noise; however, these methods are greatly limited by weight, cost, and vibration-damping effect. Damping materials primarily convert vibration energy into other forms of energy through internal friction to reduce vibration and noise, which is the most direct and effective way to reduce vibration and noise from the material itself. As a new structurally and functionally integrated ferrous material, low-stacking-fault-energy and high-manganese transformation-induced plasticity steel has outstanding damping characteristics based on a large number of ε-martensite and stacking faults as damping sources. It also has unique comprehensive advantages in mechanical properties, cost, and scope of application, indicating its broad application potential. Based on previous research results, this paper primarily summarizes the research and development of high-manganese damping steel at home and abroad. First, the microstructural features of high-manganese damping steel are introduced, and the complex thermal/deformation-induced transformation behavior among austenite, ε-martensite, and α'-martensite is investigated. Second, the mechanical behavior, work-hardening mechanism, damping performance, and the mechanism of high-manganese damping steel are summarized and analyzed. The influence of several strengthening effects on mechanical properties is compared, and the key factors affecting the damping properties of high-manganese damping steel are clarified. Finally, the problems in the research and development of high-manganese damping steel are highlighted, and future research is prospected.
|
Received: 04 March 2023
|
|
Fund: National Natural Science Foundation of China(52174359) |
Corresponding Authors:
CHEN Liqing, professor, Tel:(024)83681819, E-mail: lqchen@mail.neu.edu.cn
|
1 |
Lee Y K, Baik S H, Kim J C, et al. Effects of amount of ε martensite, carbon content and cold working on damping capacity of an Fe-17% Mn martensitic alloy [J]. J. Alloys Compd., 2003, 355: 10
doi: 10.1016/S0925-8388(03)00244-5
|
2 |
Wu Z S, Wang J F, Wang H B, et al. Enhanced damping capacities of Mg-Ce alloy by the special microstructure with parallel second phase [J]. J. Mater. Sci. Technol., 2017, 33: 941
doi: 10.1016/j.jmst.2016.06.027
|
3 |
Fukuhara M, Yin F X, Ohsawa Y, et al. High-damping properties of Mn-Cu sintered alloys [J]. Mater. Sci. Eng., 2006, A442: 439
|
4 |
Birchon D, Bromley D E, Healey D. Mechanism of energy dissipation in high-damping-capacity manganese-copper alloys [J]. Met. Sci. J., 1968, 2: 41
doi: 10.1016/0036-9748(68)90165-8
|
5 |
Souza Filho I R, Sandim M J R, Cohen R, et al. Magnetic properties of a 17.6 Mn-TRIP steel: Study of strain-induced martensite formation, austenite reversion, and athermal α'-formation [J]. J. Magn. Magn. Mater., 2019, 473: 109
doi: 10.1016/j.jmmm.2018.10.034
|
6 |
Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558
doi: 10.1016/j.actamat.2012.09.078
|
7 |
Lü Y P, Hutchinson B, Molodov D A, et al. Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy [J]. Acta Mater., 2010, 58: 3079
doi: 10.1016/j.actamat.2010.01.045
|
8 |
Xu Z Y. Martensitic transformation fcc (γ)→hcp (ε) [J]. Sci. China Ser., 1997, 27E: 289
|
|
徐祖耀. fcc(γ)→hcp(ε)马氏体相变 [J]. 中国科学, 1997, 27E: 289
|
9 |
Yang H S, Jang J H, Bhadeshia H K D H, et al. Critical assessment: Martensite-start temperature for the γ→ε transformation [J]. Calphad, 2012, 36: 16
doi: 10.1016/j.calphad.2011.10.008
|
10 |
Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy [J]. Mater. Trans. JIM, 1993, 34: 489
|
11 |
Jiang B H, Qi X, Yang S X, et al. Effect of stacking fault probability on γ-ε martensitic transformation and shape memory effect in Fe-Mn-Si based alloys [J]. Acta Mater., 1998, 46: 501
doi: 10.1016/S1359-6454(97)00266-8
|
12 |
Wang H Z, Yang P, Mao W M, et al. Effect of hot deformation of austenite on martensitic transformation in high manganese steel [J]. J. Alloys Compd., 2013, 558: 26
doi: 10.1016/j.jallcom.2012.12.032
|
13 |
Liu T Y, Yang P, Meng L, et al. Influence of austenitic orientation on martensitic transformations in a compressed high manganese steel [J]. J. Alloys Compd., 2011, 509: 8337
doi: 10.1016/j.jallcom.2011.05.015
|
14 |
Li X, Zhao Y, Chen L Q. Prior warm deformation dependence on microstructural evolution and tensile properties of a high-Mn steel [J]. JOM, 2019, 71: 1303
doi: 10.1007/s11837-018-3281-6
|
15 |
Chen J, Zhang W N, Liu Z Y, et al. Microstructural evolution and deformation mechanism of a Fe-15Mn alloy investigated by electron back-scattered diffraction and transmission electron microscopy [J]. Mater. Sci. Eng., 2017, A698: 198
|
16 |
Kinney C C, Yi I, Pytlewski K R, et al. The microstructure of as-quenched 12Mn steel [J]. Acta Mater., 2017, 125: 442
doi: 10.1016/j.actamat.2016.12.001
|
17 |
Kim J S, Jeon J B, Jung J E, et al. Effect of deformation induced transformation of ɛ-martensite on ductility enhancement in a Fe-12Mn steel at cryogenic temperatures [J]. Met. Mater. Int., 2014, 20: 41
doi: 10.1007/s12540-014-1010-4
|
18 |
Kim J S, Shin S Y, Jung J E, et al. Effects of tempering temperature on microstructure and tensile properties of Fe-12Mn steel [J]. Mater. Sci. Eng., 2015, A640: 171
|
19 |
Li X, Chen L Q, Zhao Y, et al. Influence of manganese content on ε-/α'-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Mater. Des., 2018, 142: 190
doi: 10.1016/j.matdes.2018.01.026
|
20 |
Zhang W N, Liu Z T, Zhang Z B, et al. The crystallographic mechanism for deformation induced martensitic transformation observed by high resolution transmission electron microscope [J]. Mater. Lett., 2013, 91: 158
doi: 10.1016/j.matlet.2012.09.086
|
21 |
Kwon K H, Suh B C, Baik S I, et al. Deformation behavior of duplex austenite and ε-martensite high-Mn steel [J]. Sci. Technol. Adv. Mater., 2013, 14: 014204
|
22 |
Kwon K H, Jeong J S, Choi J K, et al. In-situ neutron diffraction analysis on deformation behavior of duplex high Mn steel containing austenite and ɛ-martensite [J]. Met. Mater. Int., 2012, 18: 751
doi: 10.1007/s12540-012-5003-x
|
23 |
Seol J B, Kim J G, Na S H, et al. Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high Mn TRIP steels [J]. Acta Mater., 2017, 131: 187
doi: 10.1016/j.actamat.2017.03.076
|
24 |
Tomota Y, Strum M, Morris J W. The relationship between toughness and microstructure in Fe-high Mn binary alloys [J]. Metall. Trans., 1987, 18A: 1073
|
25 |
Tomota Y, Strum M, Morris J W. Microstructural dependence of Fe-high Mn tensile behavior [J]. Metall. Trans., 1986, 17A: 537
|
26 |
Wang Y, Hu B, Liu X Y, et al. Influence of annealing temperature on both mechanical and damping properties of Nb-alloyed high Mn steel [J]. Acta Metall. Sin., 2022, 57: 1588
|
|
王 玉, 胡 斌, 刘星毅 等. 退火温度对含Nb高锰钢力学和阻尼性能的影响 [J]. 金属学报, 2022, 57: 1588
|
27 |
Koyama M, Sawaguchi T, Tsuzaki K. Effect of deformation temperature on tensile properties in a pre-cooled Fe-Mn-C austenitic steel [J]. Mater. Sci. Eng., 2012, A556: 331
|
28 |
Koyama M, Sawaguchi T, Tsuzaki K. Premature fracture mechanism in an Fe-Mn-C austenitic steel [J]. Metall. Mater. Trans., 2012, 43A: 4063
|
29 |
Li X, Chen L Q, Zhao Y, et al. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity (TRIP) steel [J]. Mater. Sci. Eng., 2018, A715: 257
|
30 |
Koyama M, Sawaguchi T, Lee T, et al. Work hardening associated with ɛ-martensitic transformation, deformation twinning and dyna-mic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels [J]. Mater. Sci. Eng., 2011, A528: 7310
|
31 |
Li X, Wei L L, Chen L Q, et al. Work hardening behavior and tensile properties of a high-Mn damping steel at elevated temperatures [J]. Mater. Charact., 2018, 144: 575
doi: 10.1016/j.matchar.2018.07.036
|
32 |
Jiang H F, Zhang Q C, Chen X D, et al. Three types of Portevin-Le Châtelier effects: Experiment and modelling [J]. Acta Mater., 2007, 55: 2219
doi: 10.1016/j.actamat.2006.10.029
|
33 |
Huang S K, Li N, Wen Y H, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy [J]. Mater. Sci. Eng., 2008, A479: 223
|
34 |
Wu B, Qian B, Wen Y. Effects of Cr on stacking-fault energy and damping capacity of FeMn [J]. Mater. Sci. Technol., 2017, 33: 1019
doi: 10.1080/02670836.2016.1262318
|
35 |
Jun J H, Kong D K, Choi C S. The influence of Co on damping capacity of Fe-Mn-Co alloys [J]. Mater. Res. Bull., 1998, 33: 1419
doi: 10.1016/S0025-5408(98)00145-7
|
36 |
Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641
|
37 |
Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323
|
38 |
Sawaguchi T, Kikuchi T, Yin F X, et al. Internal friction of an Fe-28Mn-6Si-5Cr-0.5NbC shape memory alloy [J]. Mater. Sci. Eng., 2006, A438-440: 796
|
39 |
Sawaguchi T, Bujoreanu L G, Kikuchi T, et al. Effects of Nb and C in solution and in NbC form on the transformation-related internal friction of Fe-17Mn (mass%) alloys [J]. ISIJ Int., 2008, 48: 99
doi: 10.2355/isijinternational.48.99
|
40 |
Ding S, Li N, Xu Y G, et al. Effects of rare-earth on damping capacity of Fe-17.5Mn alloy [J]. J. Mater. Eng., 2006, (9): 17
|
|
丁 胜, 李 宁, 胥永刚 等. 稀土对Fe-17.5Mn合金阻尼性能的影响 [J]. 材料工程, 2006, (9): 17
|
41 |
Huang S K, Li N, Wen Y H, et al. Effects of deep-cooling and temperature on damping capacity of Fe-Mn alloy [J]. Acta Metall. Sin., 2007, 43: 807
|
|
黄姝珂, 李 宁, 文玉华 等. 深冷处理和温度对Fe-Mn合金阻尼性能的影响 [J]. 金属学报, 2007, 43: 807
|
42 |
Li X, Chen L Q, Yuan X Y, et al. Effect of cooling method and aging time on damping capacity of Fe-19%Mn alloy [J]. J. Univ. Sci. Technol. Liaoning, 2016, 39: 430
|
|
李 兴, 陈礼清, 袁晓云 等. 冷却方式和时效时间对Fe-19%Mn合金阻尼性能的影响 [J]. 辽宁科技大学学报, 2016, 39: 430
|
43 |
Lee Y K, Jun J H, Choi C S. Effect of ε martensite content on the damping capacity of Fe-17%Mn alloy [J]. Scr. Mater., 1996, 35: 825
doi: 10.1016/1359-6462(96)00231-X
|
44 |
Watanabe Y, Sato H, Nishino Y, et al. Training effect on damping capacity in Fe-20mass%Mn binary alloy [J]. Mater. Sci. Eng., 2008, A490: 138
|
45 |
Jun J H, Baik S H, Lee Y K, et al. The influence of aging on damping capacity of Fe-17%Mn-X%C alloys [J]. Scr. Mater., 1998, 39: 39
doi: 10.1016/S1359-6462(98)00125-0
|
46 |
Wen Y H, Xiao H X, Peng H B, et al. Relationship between damping capacity and variations of vacancies concentration and segregation of carbon atom in an Fe-Mn alloy [J]. Metall. Mater. Trans., 2015, 46A: 4828
|
47 |
Li X, Chen L Q, Zhao Y. Controlled aging processes to improve damping capacity of Fe-19Mn alloy [J]. Mater. Res. Express, 2019, 6: 066579
|
48 |
Huang S K, Zhou D C, Liu J H, et al. Effects of strain amplitude and temperature on the damping capacity of an Fe-19Mn alloy with different microstructures [J]. Mater. Charact., 2010, 61: 1227
doi: 10.1016/j.matchar.2010.08.001
|
49 |
Huang S K, Huang W R, Liu J H, et al. Internal friction mechanism of Fe-19Mn alloy at low and high strain amplitude [J]. Mater. Sci. Eng., 2013, A560: 837
|
50 |
Granato A, Lücke K. Theory of mechanical damping due to dislocations [J]. J. Appl. Phys., 1956, 27: 583
|
51 |
Granato A V, Lücke K. Temperature dependence of amplitude-dependent dislocation damping [J]. J. Appl. Phys., 1981, 52: 7136
doi: 10.1063/1.328687
|
52 |
Bardeen J, Herring C. Imperfections in Nearly Perfect Crystals [M]. New York: Wiley, 1952: 197
|
53 |
Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects [J]. Acta Mater., 2017, 128: 120
doi: 10.1016/j.actamat.2017.02.004
|
54 |
Liu X, Zhao G, Li D H, et al. Research and development of 17 Mn damping steel 4~100 mm plate at Ansteel [J]. Spec. Steel, 2022, 43(4): 55
|
|
刘 璇, 赵 刚, 李大航 等. 鞍钢17Mn阻尼钢4~100 mm板的研制 [J]. 特殊钢, 2022, 43(4): 55
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|