Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (4): 489-501    DOI: 10.11900/0412.1961.2022.00486
Overview Current Issue | Archive | Adv Search |
Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time
ZHANG Zhidong()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time. Acta Metall Sin, 2023, 59(4): 489-501.

Download:  HTML  PDF(1224KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This article reviews recent advances in the exact solution of ferromagnetic three-dimensional (3D) Ising model. First, the topological quantum statistic mechanism was introduced, which includes the time average, Jordan-von Neumann-Wigner framework, and the contribution of topological structures to thermodynamic properties of the system. Then, the Clifford algebra approach and the method of the Riemann-Hilbert problem were introduced to prove Zhang's two conjectures for the exact solution of the ferromagnetic 3D Ising model. The proof process verifies the correctness of the Zhang's exact solution for the ferromagnetic 3D Ising model. Based on these progresses, the origin of time was investigated and driven to the conclusion that in 3D many-body interacting particle (or spin) systems, time emerges spontaneously from many-body interactions.

Key words:  Ising model      exact solution      topological quantum statistic      time      many-body interaction     
Received:  08 October 2022     
ZTFLH:  O414.21  
Fund: National Natural Science Foundation of China(52031014)
Corresponding Authors:  ZHANG Zhidong, professor, Tel: (024)23971859, E-mail: zdzhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00486     OR     https://www.ams.org.cn/EN/Y2023/V59/I4/489

Fig.1  Schemes illustrate three of the braids in the transfer matrix V3 connecting to the lattice points of the knot γ[21] (The circles of V1 and V2 are not shown for simplicity. Also for simplicity, the ends of the three braids are not shown to connect with the nearest neighboring lattice points along the third dimension, P1, P2, …, Pn are lattice points)
Fig.2  Mapping between a state of crossings and a state of Ising spins[22] (Two crossing states are mapped to two spin alignment states (up and down) with values of +1 and -1, respectively)
Fig.3  Mapping between the 2D-knot diagram with randomly distributed crossings on a lattice and a 2D Ising spin dual lattice[22]
Fig.4  A braid is mapped to a spin-chain lattice[22] (P and Q represent the ends of the braid or the spin chain, respectively)
Fig.5  Schemes illustrate a unit cell of the 3D cubic Ising lattice[22] (All the five figures can be mapped each other, in which there are two contributions to physical properties: one is local spin alignment, another is nonlocal effect of the braids)
(a) with spins (red arrows) located at every lattice site and braids (blue curves) attached to every pair of the two nearest neighboring lattice sites along the third dimension
(b) with spins (red arrows) located at every lattice site and spin chains (black arrows with blue curves) formed by the mapping from the nontrivial knots (nonlinear terms)
(c) with crossings (red curves) are mapped from spins in a unit cell of the 3D Ising lattice, and some crossings (blue curves) are attached braids from the nontrivial topological structure
(d) a unit cell of the (3 + 1)D hypercubic Ising lattice in which the spins on the original 3D Ising lattice (black lines) are represented by red arrows and the spins in the high dimensional lattice (blue lines) are represented by black arrows
(e) a example of knots with crossings located on a unit cell of the (3 + 1)D hypercubic Ising lattice.
1 Ising E. Beitrag zur theorie des ferromagnetismus [J]. Z. Phys., 1925, 31: 253
doi: 10.1007/BF02980577
2 Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition [J]. Phys. Rev., 1944, 65: 117
doi: 10.1103/PhysRev.65.117
3 Yang C N. The spontaneous magnetization of a two-dimensional Ising model [J]. Phys. Rev., 1952, 85: 808
doi: 10.1103/PhysRev.85.808
4 Zhang Z D. Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices [J]. Phil. Mag., 2007, 87: 5309
doi: 10.1080/14786430701646325
5 Wu F Y, McCoy B M, Fisher M E, et al. Comment on a recent conjectured solution of the three-dimensional Ising model [J]. Philos. Mag., 2008, 88: 3093
doi: 10.1080/14786430802537738
6 Wu F Y, McCoy B M, Fisher M E, et al. Rejoinder to the response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3103
doi: 10.1080/14786430802537779
7 Perk J H H. Comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 761
doi: 10.1080/14786430902776970
8 Perk J H H. Rejoinder to the response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 769
doi: 10.1080/14786430902776962
9 Perk J H H. Comment on ‘Mathematical structure of the three-dimensional (3D) Ising model’[J]. Chin. Phys., 2013, 22B: 080508
10 Fisher M E, Perk J H H. Comments concerning the Ising model and two letters by N.H. March [J]. Phys. Lett., 2016, 380A: 1339
11 Zhang Z D. Response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3097
doi: 10.1080/14786430802537720
12 Zhang Z D. Response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 765
doi: 10.1080/14786430902776988
13 Zhang Z D. Mathematical structure of the three-dimensional (3D) Ising model [J]. Chin. Phys., 2013, 22B: 030513
14 Ławrynowicz J, Marchiafava S, Niemczynowicz A. An approach to models of order-disorder and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2010, 20: 733
doi: 10.1007/s00006-010-0219-7
15 Ławrynowicz J, Suzuki O, Niemczynowicz A. On the ternary approach to Clifford structures and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2012, 22: 757
doi: 10.1007/s00006-012-0360-6
16 Ławrynowicz J, Nowak-Kȩpczyk M, Suzuki O. Fractals and chaos related to Ising-Onsager-Zhang lattices versus the Jordan-von Neumann-Wigner procedures: Quaternary approach [J]. Int. J. Bifurcation Chaos, 2012, 22: 1230003
doi: 10.1142/S0218127412300030
17 Ławrynowicz J, Suzuki O, Niemczynowicz A, et al. Fractals and chaos related to Ising-Onsager-Zhang lattices. Quaternary approach vs. Ternary approach [J]. Adv. Appl. Clifford Algebras, 2019, 29: 45
doi: 10.1007/s00006-019-0957-0
18 Klein D J, March N H. Critical exponents in D dimensions for the Ising model, subsuming Zhang's proposals for D = 3 [J]. Phys. Lett., 2008, 372A: 5052
19 March N H. Toward a final theory of critical exponents in terms of dimensionality d plus universality class n [J]. Phys. Lett., 2015, 379A: 820
20 Zhang Z D, Suzuki O, March N H. Clifford algebra approach of 3D Ising model [J]. Adv. Appl. Clifford Algebras, 2019, 29: 12
doi: 10.1007/s00006-018-0923-2
21 Suzuki O, Zhang Z D. A method of Riemann-Hilbert problem for Zhang's conjecture 1 in a ferromagnetic 3D Ising model: Trivialization of topological structure [J]. Mathematics, 2021, 9: 776
doi: 10.3390/math9070776
22 Zhang Z D, Suzuki O. A method of the Riemann-Hilbert problem for Zhang's conjecture 2 in a ferromagnetic 3D Ising model: Topological phases [J]. Mathematics, 2021, 9: 2936
doi: 10.3390/math9222936
23 Zhang Z D. Mathematical structure and the conjectured exact solution of three dimensional (3D) Ising model [J]. Acta Metall. Sin., 2016, 52: 1311
张志东. 三维Ising模型的数学结构与精确解探索 [J]. 金属学报, 2016, 52: 1311
24 Huang K. Statistical Mechanics [M]. 2nd Ed., New York: John Wiley and Sons Inc., 1987: 341
25 Pathria R K, Beale P D. Statistical Mechanics [M]. 3rd Ed., Singapore: Elsevier, 2011: 1
26 Mattis D C, Swendsen R H. Statistical Mechanics Made Simple [M]. 2nd Ed., Singapore: World Scientific, 2008: 1
27 Tolman R C. The Principles of Statistical Mechanics [M]. New York: Dover Publications Inc., 1979: 1
28 Zhang Z D. Topological quantum statistical mechanics and topological quantum field theories [J]. Symmetry, 2022, 14: 323.
doi: 10.3390/sym14020323
29 Jordan P, Neumann J V, Wigner E. On an algebraic generalization of the quantum mechanical formalism [J]. Ann. Math., 1934, 35: 29
doi: 10.2307/1968117
30 Kogut J B. An introduction to lattice gauge theory and spin systems [J]. Rev. Mod. Phys., 1979, 51: 659
doi: 10.1103/RevModPhys.51.659
31 Witten E. Topological quantum field theory [J]. Commun. Math. Phys., 1988, 117: 353
doi: 10.1007/BF01223371
32 Witten E. Topological sigma models [J]. Commun. Math. Phys., 1988, 118: 411
doi: 10.1007/BF01466725
33 Witten E. Gauge theories and integrable lattice models [J]. Nucl. Phys., 1989, 322B: 629
34 Witten E. Quantum field theory and the Jones polynomial [J]. Commun. Math. Phys., 1989, 121: 351
doi: 10.1007/BF01217730
35 Crane L, Frenkel I B. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases [J]. J. Math. Phys., 1994, 35: 5136
doi: 10.1063/1.530746
36 Binney J J, Dowrick N J, Fisher A J, et al. The Theory of Critical Phenomena, An Introduction to the Renormalization Group [M]. Oxford: Clarendon Press, 1992: 1
37 Zhang Z D, March N H. Temperature-time duality exemplified by Ising magnets and quantum-chemical many electron theory [J]. J. Math. Chem., 2011, 49, 1283
doi: 10.1007/s10910-011-9820-9
38 Francesco P D, Mathieu P, Sénéchal D. Conformal Field Theory [M]. New York: Springer, 1997: 1
39 Kaufman B. Crystal Statistics. II. Partition function evaluated by spinor analysis [J]. Phys. Rev., 1949, 76: 1232
doi: 10.1103/PhysRev.76.1232
40 Röhrl H. Das Riemann-hilbertsche problem der theorie der linearen differentialgleichungen [J]. Math. Ann., 1957, 133: 1
41 Suzuki O. The problems of Riemann and Hilbert and the relations of Fuchs in several complex variables [A]. Equations Différentielles et Systèmes de Pfaff dans le Champ Complexe [M]. Berlin: Springer, 1979: 325
42 Parisi G. Infinite number of order parameters for spin-glasses [J]. Phys. Rev. Lett., 1979, 43: 1754
doi: 10.1103/PhysRevLett.43.1754
43 Duminil-Copin H. 100 years of the (critical) Ising model on the hypercubic lattice [Z]. arXiv:2208.00864, 2022
44 Zhang Z D. Computational complexity of spin-glass three-dimensional (3D) Ising model [J]. J. Mater. Sci. Technol., 2020, 44: 116
doi: 10.1016/j.jmst.2019.12.009
45 Zhang Z D. Mapping between spin-glass three-dimensional (3D) Ising model and Boolean satisfiability problems [J]. Mathematics, 2023, 11: 237
doi: 10.3390/math11010237
46 Inagaki T, Haribara Y, Igarashi K, et al. A coherent Ising machine for 2000-node optimization problems [J]. Science, 2016, 354: 603
pmid: 27811271
47 Zhang Z D. Exact solution of three-dimensional (3D) Z2 lattice gauge theory [J]. Annals Phys., 2023, under review
48 Zhang Z D. Exact solution of two-dimensional (2D) Ising model with a transverse field: A low-dimensional quantum spin system [J]. Physica, 2021, 128E: 114632
[1] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[2] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[3] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[4] Chang LIU, Shusen LI, Lifeng ZHANG. Simulation of Gas-Liquid Two-Phase Flow and Mixing Phenomena During RH Refining Process[J]. 金属学报, 2018, 54(2): 347-356.
[5] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[6] Jun HUANG,Yongjie ZHANG,Baofeng WANG,Yakun ZHANG,Xin YE,Shikai ZHOU. ESTABLISHMENT OF A FULL SCALE TUNDISH PHYSICAL SIMULATION PLATFORM AND APPLICATION RESEARCH[J]. 金属学报, 2016, 52(11): 1484-1490.
[7] Zhidong ZHANG. MATHEMATICAL STRUCTURE AND THE CONJECTURED EXACT SOLUTION OF THREEDIMENSIONAL (3D) ISING MODEL[J]. 金属学报, 2016, 52(10): 1311-1325.
[8] Ke ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Gengwei YANG, Yuanmei LI. EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL[J]. 金属学报, 2015, 51(5): 553-560.
[9] WANG Lilin, LIN Xin, WANG Yonghui, YU Honglei, HUANG Weidong. REAL-TIME OBSERVATION OF SOLIDIFICATION MICROSTRUCTURE IN LASER REMELTING POOL[J]. 金属学报, 2015, 51(4): 492-498.
[10] Shuai SUN,Daxin E. A NOVEL MODEL BASED ON VISCOELASTIC THEO- RY TO PREDICT THE TIME-DEPENDENT SPRINGBACK FOR DP600 STEEL SHEET[J]. 金属学报, 2015, 51(11): 1356-1364.
[11] PENG Zhifang, DANG Yingying,PENG Fangfang. EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL[J]. 金属学报, 2012, 48(4): 450-454.
[12] ZHANG Zhiming WANG Jianqiu HAN En-Hou KE Wei. ANALYSES OF SURFACE OXIDE FILMS ON GROUND ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES[J]. 金属学报, 2011, 47(7): 823-830.
[13] ZHANG Zhiming WANG Jianqiu HAN En-Hou KE Wei. ANALYSES OF SURFACE OXIDE FILMS ON ELECTROPOLISHED ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES[J]. 金属学报, 2011, 47(7): 831-838.
[14] LEI Hong ZHAO Yan BAO Jialin LIU Chengjun CHEN Haigeng HE Jicheng. WHOLE ANALYSIS APPROACH FOR RESIDUE TIME DISTRIBUTION CURVE IN MULTI-STRAND CONTINUOUS CASTING TUNDISH[J]. 金属学报, 2010, 46(9): 1109-1114.
[15] SHU Wei WANG Xuemin LI Shurui HE Xinlai. INFLUENCE OF SECOND–PHASE PARTICLES CONTAINING Ti ON MICROSTRUCTURE AND PROPERTIES OF WELD–HEAT–AFFECTED–ZONE OF A MICROALLOY STEEL[J]. 金属学报, 2010, 46(8): 997-1003.
No Suggested Reading articles found!