|
|
Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time |
ZHANG Zhidong( ) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time. Acta Metall Sin, 2023, 59(4): 489-501.
|
Abstract This article reviews recent advances in the exact solution of ferromagnetic three-dimensional (3D) Ising model. First, the topological quantum statistic mechanism was introduced, which includes the time average, Jordan-von Neumann-Wigner framework, and the contribution of topological structures to thermodynamic properties of the system. Then, the Clifford algebra approach and the method of the Riemann-Hilbert problem were introduced to prove Zhang's two conjectures for the exact solution of the ferromagnetic 3D Ising model. The proof process verifies the correctness of the Zhang's exact solution for the ferromagnetic 3D Ising model. Based on these progresses, the origin of time was investigated and driven to the conclusion that in 3D many-body interacting particle (or spin) systems, time emerges spontaneously from many-body interactions.
|
Received: 08 October 2022
|
|
Fund: National Natural Science Foundation of China(52031014) |
Corresponding Authors:
ZHANG Zhidong, professor, Tel: (024)23971859, E-mail: zdzhang@imr.ac.cn
|
1 |
Ising E. Beitrag zur theorie des ferromagnetismus [J]. Z. Phys., 1925, 31: 253
doi: 10.1007/BF02980577
|
2 |
Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition [J]. Phys. Rev., 1944, 65: 117
doi: 10.1103/PhysRev.65.117
|
3 |
Yang C N. The spontaneous magnetization of a two-dimensional Ising model [J]. Phys. Rev., 1952, 85: 808
doi: 10.1103/PhysRev.85.808
|
4 |
Zhang Z D. Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices [J]. Phil. Mag., 2007, 87: 5309
doi: 10.1080/14786430701646325
|
5 |
Wu F Y, McCoy B M, Fisher M E, et al. Comment on a recent conjectured solution of the three-dimensional Ising model [J]. Philos. Mag., 2008, 88: 3093
doi: 10.1080/14786430802537738
|
6 |
Wu F Y, McCoy B M, Fisher M E, et al. Rejoinder to the response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3103
doi: 10.1080/14786430802537779
|
7 |
Perk J H H. Comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 761
doi: 10.1080/14786430902776970
|
8 |
Perk J H H. Rejoinder to the response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 769
doi: 10.1080/14786430902776962
|
9 |
Perk J H H. Comment on ‘Mathematical structure of the three-dimensional (3D) Ising model’[J]. Chin. Phys., 2013, 22B: 080508
|
10 |
Fisher M E, Perk J H H. Comments concerning the Ising model and two letters by N.H. March [J]. Phys. Lett., 2016, 380A: 1339
|
11 |
Zhang Z D. Response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ [J]. Philos. Mag., 2008, 88: 3097
doi: 10.1080/14786430802537720
|
12 |
Zhang Z D. Response to the comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’ [J]. Philos. Mag., 2009, 89: 765
doi: 10.1080/14786430902776988
|
13 |
Zhang Z D. Mathematical structure of the three-dimensional (3D) Ising model [J]. Chin. Phys., 2013, 22B: 030513
|
14 |
Ławrynowicz J, Marchiafava S, Niemczynowicz A. An approach to models of order-disorder and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2010, 20: 733
doi: 10.1007/s00006-010-0219-7
|
15 |
Ławrynowicz J, Suzuki O, Niemczynowicz A. On the ternary approach to Clifford structures and Ising lattices [J]. Adv. Appl. Clifford Algebras, 2012, 22: 757
doi: 10.1007/s00006-012-0360-6
|
16 |
Ławrynowicz J, Nowak-Kȩpczyk M, Suzuki O. Fractals and chaos related to Ising-Onsager-Zhang lattices versus the Jordan-von Neumann-Wigner procedures: Quaternary approach [J]. Int. J. Bifurcation Chaos, 2012, 22: 1230003
doi: 10.1142/S0218127412300030
|
17 |
Ławrynowicz J, Suzuki O, Niemczynowicz A, et al. Fractals and chaos related to Ising-Onsager-Zhang lattices. Quaternary approach vs. Ternary approach [J]. Adv. Appl. Clifford Algebras, 2019, 29: 45
doi: 10.1007/s00006-019-0957-0
|
18 |
Klein D J, March N H. Critical exponents in D dimensions for the Ising model, subsuming Zhang's proposals for D = 3 [J]. Phys. Lett., 2008, 372A: 5052
|
19 |
March N H. Toward a final theory of critical exponents in terms of dimensionality d plus universality class n [J]. Phys. Lett., 2015, 379A: 820
|
20 |
Zhang Z D, Suzuki O, March N H. Clifford algebra approach of 3D Ising model [J]. Adv. Appl. Clifford Algebras, 2019, 29: 12
doi: 10.1007/s00006-018-0923-2
|
21 |
Suzuki O, Zhang Z D. A method of Riemann-Hilbert problem for Zhang's conjecture 1 in a ferromagnetic 3D Ising model: Trivialization of topological structure [J]. Mathematics, 2021, 9: 776
doi: 10.3390/math9070776
|
22 |
Zhang Z D, Suzuki O. A method of the Riemann-Hilbert problem for Zhang's conjecture 2 in a ferromagnetic 3D Ising model: Topological phases [J]. Mathematics, 2021, 9: 2936
doi: 10.3390/math9222936
|
23 |
Zhang Z D. Mathematical structure and the conjectured exact solution of three dimensional (3D) Ising model [J]. Acta Metall. Sin., 2016, 52: 1311
|
|
张志东. 三维Ising模型的数学结构与精确解探索 [J]. 金属学报, 2016, 52: 1311
|
24 |
Huang K. Statistical Mechanics [M]. 2nd Ed., New York: John Wiley and Sons Inc., 1987: 341
|
25 |
Pathria R K, Beale P D. Statistical Mechanics [M]. 3rd Ed., Singapore: Elsevier, 2011: 1
|
26 |
Mattis D C, Swendsen R H. Statistical Mechanics Made Simple [M]. 2nd Ed., Singapore: World Scientific, 2008: 1
|
27 |
Tolman R C. The Principles of Statistical Mechanics [M]. New York: Dover Publications Inc., 1979: 1
|
28 |
Zhang Z D. Topological quantum statistical mechanics and topological quantum field theories [J]. Symmetry, 2022, 14: 323.
doi: 10.3390/sym14020323
|
29 |
Jordan P, Neumann J V, Wigner E. On an algebraic generalization of the quantum mechanical formalism [J]. Ann. Math., 1934, 35: 29
doi: 10.2307/1968117
|
30 |
Kogut J B. An introduction to lattice gauge theory and spin systems [J]. Rev. Mod. Phys., 1979, 51: 659
doi: 10.1103/RevModPhys.51.659
|
31 |
Witten E. Topological quantum field theory [J]. Commun. Math. Phys., 1988, 117: 353
doi: 10.1007/BF01223371
|
32 |
Witten E. Topological sigma models [J]. Commun. Math. Phys., 1988, 118: 411
doi: 10.1007/BF01466725
|
33 |
Witten E. Gauge theories and integrable lattice models [J]. Nucl. Phys., 1989, 322B: 629
|
34 |
Witten E. Quantum field theory and the Jones polynomial [J]. Commun. Math. Phys., 1989, 121: 351
doi: 10.1007/BF01217730
|
35 |
Crane L, Frenkel I B. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases [J]. J. Math. Phys., 1994, 35: 5136
doi: 10.1063/1.530746
|
36 |
Binney J J, Dowrick N J, Fisher A J, et al. The Theory of Critical Phenomena, An Introduction to the Renormalization Group [M]. Oxford: Clarendon Press, 1992: 1
|
37 |
Zhang Z D, March N H. Temperature-time duality exemplified by Ising magnets and quantum-chemical many electron theory [J]. J. Math. Chem., 2011, 49, 1283
doi: 10.1007/s10910-011-9820-9
|
38 |
Francesco P D, Mathieu P, Sénéchal D. Conformal Field Theory [M]. New York: Springer, 1997: 1
|
39 |
Kaufman B. Crystal Statistics. II. Partition function evaluated by spinor analysis [J]. Phys. Rev., 1949, 76: 1232
doi: 10.1103/PhysRev.76.1232
|
40 |
Röhrl H. Das Riemann-hilbertsche problem der theorie der linearen differentialgleichungen [J]. Math. Ann., 1957, 133: 1
|
41 |
Suzuki O. The problems of Riemann and Hilbert and the relations of Fuchs in several complex variables [A]. Equations Différentielles et Systèmes de Pfaff dans le Champ Complexe [M]. Berlin: Springer, 1979: 325
|
42 |
Parisi G. Infinite number of order parameters for spin-glasses [J]. Phys. Rev. Lett., 1979, 43: 1754
doi: 10.1103/PhysRevLett.43.1754
|
43 |
Duminil-Copin H. 100 years of the (critical) Ising model on the hypercubic lattice [Z]. arXiv:2208.00864, 2022
|
44 |
Zhang Z D. Computational complexity of spin-glass three-dimensional (3D) Ising model [J]. J. Mater. Sci. Technol., 2020, 44: 116
doi: 10.1016/j.jmst.2019.12.009
|
45 |
Zhang Z D. Mapping between spin-glass three-dimensional (3D) Ising model and Boolean satisfiability problems [J]. Mathematics, 2023, 11: 237
doi: 10.3390/math11010237
|
46 |
Inagaki T, Haribara Y, Igarashi K, et al. A coherent Ising machine for 2000-node optimization problems [J]. Science, 2016, 354: 603
pmid: 27811271
|
47 |
Zhang Z D. Exact solution of three-dimensional (3D) Z2 lattice gauge theory [J]. Annals Phys., 2023, under review
|
48 |
Zhang Z D. Exact solution of two-dimensional (2D) Ising model with a transverse field: A low-dimensional quantum spin system [J]. Physica, 2021, 128E: 114632
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|