Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (7): 947-960    DOI: 10.11900/0412.1961.2022.00027
Research paper Current Issue | Archive | Adv Search |
{111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures
WANG Zongpu1, WANG Weiguo1,2(), Rohrer Gregory S3, CHEN Song1,2, HONG Lihua1,2, LIN Yan1,2, FENG Xiaozheng1, REN Shuai1, ZHOU Bangxin4
1Institute of Grain Boundary Engineering, Fujian University of Technology, Fuzhou 350118, China
2School of Materials Science and Technology, Fujian University of Technology, Fuzhou 350118, China
3Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213 -3890, USA
4Institute of Materials, Shanghai University, Shanghai 200072, China
Cite this article: 

WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures. Acta Metall Sin, 2023, 59(7): 947-960.

Download:  HTML  PDF(6204KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recent development in grain boundary design and control indicates that manipulating the {111}/{111} near singular boundaries will be a promising pertinent to improve the performance against intergranular corrosion attacks for the high stacking fault energy face-centered cubic metals such as aluminum and its alloys. In the current study, five samples of a home-made Al-Zn-Mg-Cu super-high-strength aluminum alloy were rolled at temperatures of 250, 300, 350, 400, and 450oC, followed by 30 min annealing at 520oC. A method of grain boundary interconnection characterization based on electron backscatter diffraction and five parameter analysis was utilized to assess the {111}/{111} near singular boundaries in the samples as processed. The preceding rolling temperature was discovered to have a significant impact on the formation of {111}/{111} near singular boundaries during the subsequent annealing at 520oC, that is, the fraction of {111}/{111} near singular boundaries out of the entire grain boundaries increases at first and then decreases as the preceding rolling temperature increases from 250oC to 450oC. In the five samples as processed, the one rolled at 300oC followed by annealing at 520oC has a peak content of {111}/{111} near singular boundaries and the fraction reaches 5.0%, which is 10 times higher compared to that of the singular boundaries or namely the coherent twin boundaries. Further investigations reveal that the sample rolled at 300oC possesses a specific deformation substructure as well as suitable stored energy, resulting in continuous recrystallization during the successive annealing. This type of behavior aids in the formation of {111}/{111} near singular boundaries. The samples rolled at or above 350oC, on the other hand, exhibit discontinuous dynamic recrystallization, which is detrimental to the development of {111}/{111} near singular boundaries during subsequent annealing. Compared to the sample rolled at 300oC, the sample rolled at 250oC has higher stored energy and it improves discontinuous recrystallization during the subsequent annealing. This also harms the formation of {111}/{111} near singular boundaries. Off-line in-situ surface etching test and high-resolution transmission electron microscope (HR-TEM) observation demonstrate that the {111}/{111} near singular boundaries have much higher resistance to intergranular corrosion in comparison to the random boundaries, they possess disclination structures of which the atomic ordering is much higher than that of the random boundaries. The results show that the {111}/{111} near singular boundary is regulable, and to further improving the fraction of such boundaries by manipulating the microstructure evolution will be effective in the practice of how reducing the intergranular corrosion in the aluminum and its alloys.

Key words:  Al-Zn-Mg-Cu alloy      super-high strength aluminum alloy      near singular boundary      grain boundary inter-connection      intergranular corrosion     
Received:  21 January 2022     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China(51971063);Special Program for Guiding Local Science and Technology Development by the Central Government(2019L3010)
Corresponding Authors:  WANG Weiguo, professor, Tel: (0591)22863515, E-mail: wang_weiguo@vip.163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00027     OR     https://www.ams.org.cn/EN/Y2023/V59/I7/947

SampleRollingThicknessAnnealing
temperature / oCreduction / %
A25080520oC, 30 min
B30080520oC, 30 min
C35080520oC, 30 min
D40080520oC, 30 min
E45080520oC, 30 min
A125080-
B130080-
C135080-
D140080-
E145080-
Table 1  Samples and treatments of Al-Zn-Mg-Cu alloy
Fig.1  Orientation imaging microscopy (OIM) images (a, d, g, j, m), grain boundary networks (GBN) maps (b, e, h, k, n), and misorientation distributions (MD) (c, f, i, l, o) for the samples A (a-c), B (d-f), C (g-i), D (j-l), and E (m-o) (Black arr-ows in Figs.1b and h show the fine grains developed from the nucleus of discontinuous recrystallization (DRX); black and red dotted lines in Figs.1d and e show the banded grain clusters came from continuous recrystallization (CRX); red arrows in Figs.1k and n show the grains of abnormal growth; red-dotted-line circle areas show the relative fine grains produced by DRX)
GB rotationSample ASample BSample CSample DSample E
axesLF / %GNNF / %LF / %GNNF / %LF / %GNNF / %LF / %GNNF / %LF / %GNNF / %
<111>5.7436135.806.1331246.156.0540246.146.2135166.185.4928125.59
<112>11.73732411.7711.90607211.9511.46758911.5811.92674111.8512.28612212.17
<122>16.491026216.4916.70852116.7717.141122817.1116.80966717.0016.43822016.34
Table 2  After-filtration statistics of the grain boundaries with the rotation axes of <111>, <112>, and <122> in the samples A-E
Fig.2  Misorientation distributions of grain boundaries with specific rotation axes for the samples A-E
(a) rotation around <111> (b) rotation around <112> (c) rotation around <122>
Fig.3  Five parameter grain boundary plane distributions of {111}/{111} near singular boundary (NSB) with varied misorientations in the sample A (MRD—multiple of random distribution)
(a) [111]/20° (b) [111]/45° (c) [111]/50° (d) [112]/30° (e) [122]/35°
Fig.4  Five parameter grain boundary plane distributions of {111}/{111}-NSB with varied misorientations in the sample B
(a) [111]/15° (b) [111]/35° (c) [111]/40°
(d) [111]/45° (e) [111]/50° (f) [111]/55°
(g) [112]/15° (h) [112]/30° (i) [112]/40°
(j) [122]/25° (k) [122]/30° (l) [122]/35°
Fig.5  Five parameter grain boundary plane distributions of {111}/{111}-NSB with varied misorientations in the sample C
(a) [111]/20° (b) [111]/25° (c) [111]/30° (d) [111]/50° (e) [122]/20° (f) [122]/25° (g) [122]/35°
SampleMisorientation [uvw]/θPi / %MiWi / (o)Fi / %
A[111]/20°0.201.441.880.10
[111]/45°0.691.352.070.36
[111]/50°0.901.151.970.46
[112]/30°0.851.672.290.44
[122]/35°1.211.412.030.63
B[111]/15°0.232.171.600.13
[111]/35°0.502.151.800.27
[111]/40°0.591.142.120.30
[111]/45°0.711.161.850.37
[111]/50°1.031.471.310.55
[111]/55°1.241.401.310.66
[122]/20°0.741.471.910.39
[122]/25°0.781.511.880.41
[122]/30°1.011.741.560.54
[122]/35°1.121.162.050.57
[112]/15°0.681.152.210.35
[112]/30°0.951.281.530.50
C[111]/20°0.231.721.690.12
[111]/25°0.251.931.670.13
[111]/30°0.331.291.860.17
[111]/50°0.891.591.900.46
[122]/20°0.691.382.200.35
[122]/25°0.761.132.280.39
[122]/35°1.051.331.780.54
D[111]/20°0.171.741.750.09
[111]/25°0.292.841.370.17
[111]/30°0.381.661.410.20
[111]/35°0.581.382.000.30
[111]/40°0.621.531.690.33
[111]/50°0.911.172.100.46
[112]/15°0.451.442.130.23
[112]/20°0.611.541.570.32
[112]/25°0.761.462.200.39
E[111]/20°0.201.612.030.10
[111]/25°0.342.171.870.18
[111]/30°0.331.182.270.17
[111]/35°0.461.292.170.24
[111]/40°0.481.582.410.25
[111]/55°1.031.442.180.53
[122]/35°1.411.332.010.73
[112]/25°0.891.631.950.46
[112]/15°0.521.861.930.27
Table 3  Statistics of the {111}/{111}-NSB in the samples A-E
Fig.6  Length fractions of {111}/{111}-NSB and singular boundary (SB) in the samples A-E
Fig.7  Five parameter grain boundary plane distributions of Σ3 (<111>/60°) boundaries in the samples A (a), B (b), and C (c)
Fig.8  OIM images of the areas containing {111}/{111}-NSB (a, d), grain boundary trace analyses for {111}/{111}-NSB based on {111} overlapped pole figures (b, e), and morphologies of {111}/{111}-NSB after off-line in-situ surface etching (c, f) (LAGB—low angle grain boundary, RB—random boundary, A—grain A, B—grain B, C—grain C, D—grain D) (a-c) {111}/{111}-NSB (GBAB) with a misorientation of [11¯1]/45.4° (d-f) {111}/{111}-NSB (GBCD) with a misorientation of [1¯11]/33.7°
Fig.9  High resolution transmission electron microscopy (HRTEM) images and selected area electron diffraction (SAED) patterns (insets) of {111}/{111}-NSB in the Al-Zn-Mg-Cu alloy (d{111}—{111} interplanar spacing)
(a) {111}/{111}-NSB with a misorientation of [111]/40.7°
(b) {111}/{111}-NSB with a misorientation of [11¯1¯]/29.7°
Fig.10  OIM images of samples A1 (a), B1 (b), and C1 (c)
Fig.11  Misorientation distributions of samples A1 (a), B1 (b), and C1 (c)
Fig.12  Vickers hardnesses of samples A1-E1
1 Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
2 Georgantzia E, Gkantou M, Kamaris G S. Aluminium alloys as structural material: A review of research [J]. Eng. Struct., 2021, 227: 111372
doi: 10.1016/j.engstruct.2020.111372
3 Liu Y R, Pan Q L, Li H, et al. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment [J]. J. Alloys Compd., 2019, 792: 32
doi: 10.1016/j.jallcom.2019.03.324
4 Bai F, Gao W L, He Z L, et al. Effect of ageing processes on mechanical properties and intergranular corrosion of 7A85 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 957
柏 璠, 高文理, 何正林 等. 时效工艺对7A85铝合金力学和晶间腐蚀性能的影响 [J]. 中国有色金属学报, 2016, 26: 957
5 Li J H, Li F G, Ma X K, et al. Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2018, A732: 53
6 Zhang Z, Deng Y L, Ye L Y, et al. Influence of aging treatments on the strength and localized corrosion resistance of aged Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 846: 156223
doi: 10.1016/j.jallcom.2020.156223
7 Rao A C U, Vasu V, Govindaraju M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1447
doi: 10.1016/S1003-6326(16)64220-6
8 Xie P, Chen S Y, Chen K H, et al. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment [J]. Corros. Sci., 2019, 161: 108184
doi: 10.1016/j.corsci.2019.108184
9 Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2010, 58: 4814
doi: 10.1016/j.actamat.2010.05.017
10 Wang W Y, Pan Q L, Wang X D, et al. Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 845: 156286
doi: 10.1016/j.jallcom.2020.156286
11 Cai B, Adams B L, Nelson T W. Relation between precipitate-free zone width and grain boundary type in 7075-T7 Al alloy [J]. Acta Mater., 2007, 55: 1543
doi: 10.1016/j.actamat.2006.10.015
12 Martinez-Lombardia E, Lapeire L, Maurice V, et al. In situ scanning tunneling microscopy study of the intergranular corrosion of copper [J]. Electrochem. Commun., 2014, 41: 1
doi: 10.1016/j.elecom.2014.01.007
13 Aust K T. Grain boundary engineering [J]. Can. Metall. Quart., 1994, 33: 265
doi: 10.1179/cmq.1994.33.4.265
14 Du A H, Wang W G, Gu X F, et al. The dependence of precipitate morphology on the grain boundary types in an aged Al-Cu binary alloy [J]. J. Mater. Sci., 2021, 56: 781
doi: 10.1007/s10853-020-05239-5
15 Wang W G, Zhou B X, Rohrer G S, et al. Textures and grain boundary character distributions in a cold rolled and annealed Pb-Ca based alloy [J]. Mater. Sci. Eng., 2010, A527: 3695
16 Prithiv T S, Bhuyan P, Pradhan S K, et al. A critical evaluation on efficacy of recrystallization vs. strain induced boundary migration in achieving grain boundary engineered microstructure in a Ni-base superalloy [J]. Acta Mater., 2018, 146: 187
doi: 10.1016/j.actamat.2017.12.045
17 Liu Z Q, Wang W G. Study on Σ3 boundaries in an cold rolled and recrystallized Al-Cu alloy [J]. J. Chin. Electron Microsc. Soc., 2018, 37: 232
刘智强, 王卫国. 冷轧变形Al-Cu合金再结晶Σ3晶界研究 [J]. 电子显微学报, 2018, 37: 232
18 Fang H C, Chao H, Chen K H. Effect of Zr, Er and Cr additions on microstructures and properties of Al-Zn-Mg-Cu alloys [J]. Mater. Sci. Eng., 2014, A610: 10
19 Wang W G, Cai C H, Rohrer G S, et al. Grain boundary inter-connections in polycrystalline aluminum with random orientation [J]. Mater. Charact., 2018, 144: 411
doi: 10.1016/j.matchar.2018.07.040
20 Janssens K G F, Olmsted D, Holm E A, et al. Computing the mobility of grain boundaries [J]. Nat. Mater., 2006, 5: 124
pmid: 16400330
21 Ashrafizadeh S M, Eivani A R, Jafarian H R, et al. Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatment [J]. Mater. Sci. Eng., 2017, A687: 54
22 Rohrer G S, Saylor D M, Dasher B E, et al. The Distribution of Internal Interfaces in Polycrystals [J]. Z. Metallkd., 2004, 95: 197
doi: 10.3139/146.017934
23 Wang W G, Du A H, Yang X M, et al. Quantitative determination of grain boundary inter-connections [P]. Chin Pat, 202011173146.8, 2021
王卫国, 杜阿华, 杨先明 等. 晶界界面匹配定量表征方法 [P]. 中国专利, 202011173146.8, 2021))
24 Yang X M, Wang W G, Gu X F. The near singular boundaries in BCC iron [J]. Philos. Mag., 2022, 102: 440
doi: 10.1080/14786435.2021.2004327
25 Wright S I, Larsen R J. Extracting twins from orientation imaging microscopy scan data [J]. J. Microsc., 2002, 205: 245
doi: 10.1046/j.1365-2818.2002.00992.x
26 Mackenzie J K. Second paper on statistics associated with the random disorientation of cubes [J]. Biometrika, 1958, 45: 229
doi: 10.1093/biomet/45.1-2.229
27 Xie B C, Zhang B Y, Ning Y Q, et al. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains [J]. J. Alloys Compd., 2019, 786: 636
doi: 10.1016/j.jallcom.2019.01.334
28 Yang Y, Zhou K, Li G J. Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening [J]. Opt. Laser Technol., 2019, 109: 1
doi: 10.1016/j.optlastec.2018.07.041
29 Li J C M. Disclination model of high angle grain boundaries [J]. Surf. Sci., 1972, 31: 12
doi: 10.1016/0039-6028(72)90251-8
30 Klimanek P, Klemm V, Romanov A E, et al. Disclinations in plastically deformed metallic materials [J]. Adv. Eng. Mater., 2001, 3: 877
doi: 10.1002/1527-2648(200111)3:11&lt;877::AID-ADEM877&gt;3.0.CO;2-L
31 Zhao J H, Deng Y L, Tang J G. Grain refining with DDRX by isothermal MDF of Al-Zn-Mg-Cu alloy [J]. J. Mater. Res. Technol., 2020, 9: 8001
doi: 10.1016/j.jmrt.2020.05.033
32 Gao W L, Bai G R, Luan G F, et al. A criterion for dynamic recrystallization in metals' hot working [J]. J. Northeast Univ. Technol., 1993, 14: 49
高维林, 白光润, 栾瑰馥 等. 金属热变形中动态再结晶的临界判据 [J]. 东北工学院学报, 1993, 14: 49
33 Gao W L, Bai G R, Zhou Z M. An evolution model of dislocation patterns in plastic deformation and its applications [J]. Sci. China, 1995, 38A: 875
高维林, 白光润, 周志敏. 金属塑性变形中位错组态演化模型及其应用 [J]. 中国科学, 1994, 24A: 1225
[1] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[2] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[3] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[4] Di FENG, Xinming ZHANG, Hongmei CHEN, Yunxue JIN, Guoying WANG. Effect of Non-Isothermal Retrogression and Re-Ageing on Microstructure and Properties of Al-8Zn-2Mg-2Cu Alloy Thick Plate[J]. 金属学报, 2018, 54(1): 100-108.
[5] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
[6] Xianfeng ZHANG,Guoai LI,Zheng LU,Juan YU,Min HAO. EFFECT OF PREAGED STRETCH AFTER QUENCHED ON THE PROPERTIES AND MICROSTRUCTURE OF A NATURALLY AGED Al-Li ALLOY[J]. 金属学报, 2016, 52(12): 1497-1502.
[7] YANG Hui, XIA Shuang, ZHANG Zilong, ZHAO Qing, LIU Tingguang, ZHOU Bangxin, BAI Qin. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(3): 333-340.
[8] Shaoming QIANG,Laizhu JIANG,Jin LI,Tianwei LIU,Yanping WU,Yiming JIANG. EVALUATION OF INTERGRANULAR CORROSION SUSCEPTIBILITY OF 11Cr FERRITIC STAINLESS STEEL BY DL-EPR METHOD[J]. 金属学报, 2015, 51(11): 1349-1355.
[9] LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF HIGH TEMPERATURE PRE-AGEING AND LOW-TEMPERATURE RE-AGEING ON MECHANICAL PROPERTIES AND INTERGRANULAR CORROSION SUSCEPTIBILITY OF Al-Mg-Si-Cu ALLOYS[J]. 金属学报, 2014, 50(11): 1357-1366.
[10] LI Xiangliang, CHEN Jianghua, LIU Chunhui, FENG Jiani, WANG Shihao. EFFECTS OF T6 AND T78 TEMPERS ON THE MICROSTRUCTURES AND PROPERTIES OF Al-Mg-Si-Cu ALLOYS[J]. 金属学报, 2013, 49(2): 243-250.
[11] GUO Lifang LI Xuyan SUN Tao XU Juliang LI Jin JIANG Yiming . THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304[J]. 金属学报, 2012, 48(12): 1503-1509.
[12] LI Hai PAN Daozhao WANG Zhixiu ZHENG Ziqiao. INFLUENCE OF T6I6 TEMPER ON TENSILE AND INTERGRANULAR CORROSION PROPERTIES OF 6061 ALUMINUM ALLOY[J]. 金属学报, 2010, 46(4): 494-499.
[13] WANG Hongbin; CUI Hua; HAO Bin; CHENG Junsheng; HUANG Jinfeng; ZHANG Jishan. RETROGRESSION REAGING TREATMENT OF SPRAY DEPOSITED Al-Zn-Mg-Cu ALLOYS[J]. 金属学报, 2005, 41(12): 1267-1271 .
[14] YANG Bin; CHENG Junsheng; FAN Jianzhong; TIAN Xiaofeng; CHEN Hanbin ZHANG Jishan. Microstructural evolution of nanocrystal-line Al-Zn-Mg-Cu alloy powders by cryomilling[J]. 金属学报, 2005, 41(11): 1195-1198 .
[15] XIE Jianhui;WU Yinshun; ZHU Rizhang (Universily of Science and Technology Beijing;Beijing 100083). INTERGRANULAR CORROSION BEHAVIOUR OF IMPLANT STAINLESS STEEL DURING CORROSION FATIGUE[J]. 金属学报, 1997, 33(3): 304-308.
No Suggested Reading articles found!