|
|
Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation |
ZHANG Baicheng1,2(), ZHANG Wenlong1,2, QU Xuanhui1,2 |
1.Beijing Advanced Innovation Center for Materials Genome Engineering, Advanced Material & Technology Institute, University of Science and Technology Beijing, Beijing 100083, China 2.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
ZHANG Baicheng, ZHANG Wenlong, QU Xuanhui. Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation. Acta Metall Sin, 2023, 59(1): 75-86.
|
Abstract As a new manufacturing technology, additive manufacturing has brought about revolutionary changes in the aerospace, transportation, and biomedicine fields. However, since the metal materials used in additive manufacturing are still mainly traditional alloys, some of them are unsuitable for high-energy beam processing, indicating room for performance improvements. Besides, the development of additive manufacturing materials still follows the traditional trial-and-error model, seriously restricting the development of high-performance materials. Therefore, this paper discusses this situation and the existing additive manufacturing technology problems of steel, titanium alloys, and aluminum alloys, after which the application of high-throughput preparation and characterization technologies in material development and design were expounded. Combined with the principle and characteristics of high-throughput additive manufacturing preparations, the prospects and challenges of the high-throughput preparation and characterization technology of additive manufacturing in material development were expounded. Then, futuristic developmental directions of key materials for additive manufacturing development and composition optimization were proposed.
|
Received: 31 August 2022
|
|
Fund: National Key Research and Development Program of China(2021YFB3802300);National Natural Science Foundation of China(51901020);National Natural Science Foundation of China(52171026) |
About author: ZHANG Baicheng, associate professor, Tel: (010)82663610, E-mail: zhangbc@ustb.edu.cn
|
1 |
Tian X, Li D, Lu B. Additive Manufacturing: Controllable fabrication for integrated micro and macro structures [J]. J. Ceram. Sci. Technol., 2014, 5: 261
|
2 |
Lu B H. Additive manufacturing—Current situation and future [J]. China Mech. Eng., 2020, 31: 19
|
|
卢秉恒. 增材制造技术——现状与未来 [J]. 中国机械工程, 2020, 31: 19
|
3 |
Liu Z Y, He B, Lyu T Y, et al. A review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V [J]. JOM, 2021, 73: 1804
doi: 10.1007/s11837-021-04670-6
|
4 |
Wei J, Chu X, Sun X Y, et al. Machine learning in materials science [J]. InfoMat, 2019, 1: 338
doi: 10.1002/inf2.12028
|
5 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in china [J]. Acta Metall. Sin., 2020, 56: 1313
|
|
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
6 |
Miracle D B, Li M, Zhang Z H, et al. Emerging capabilities for the high-throughput characterization of structural materials [J]. Annu. Rev. Mater. Res., 2021, 51: 131
doi: 10.1146/annurev-matsci-080619-022100
|
7 |
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
|
8 |
Azarniya A, Colera X G, Mirzaali M J, et al. Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties [J]. J. Alloys Compd., 2019, 804: 163
doi: 10.1016/j.jallcom.2019.04.255
|
9 |
Yin Y, Tan Q Y, Bermingham M, et al. Laser additive manufacturing of steels [J]. Int. Mater. Rev., 2022, 67: 487
doi: 10.1080/09506608.2021.1983351
|
10 |
Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
11 |
Jiang Q, Zhang P P, Yu Z S, et al. A review on additive manufacturing of pure copper [J]. Coatings, 2021, 11: 740
doi: 10.3390/coatings11060740
|
12 |
Bobbio L D, Otis R A, Borgonia J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J]. Acta Mater., 2017, 127: 133
doi: 10.1016/j.actamat.2016.12.070
|
13 |
Wen Y J, Zhang B C, Narayan R L, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718 [J]. Addit. Manuf., 2021, 40: 101926
|
14 |
Li Q G, Li G C, Lin X, et al. Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using laser powder bed fusion: Design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms [J]. Addit. Manuf., 2022, 57: 102967
|
15 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
16 |
Wang Z, Ummethala R, Singh N, et al. Selective laser melting of aluminum and its alloys [J]. Materials, 2020, 13: 4564
doi: 10.3390/ma13204564
|
17 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
18 |
Samuel A M, Garza-Elizondo G H, Doty H W, et al. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys [J]. Mater. Des., 2015, 80: 99
doi: 10.1016/j.matdes.2015.05.013
|
19 |
Yang J S, Liu C H, Ma P P, et al. Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al-Cu alloy [J]. Int. J. Plast., 2022, 158: 103413
doi: 10.1016/j.ijplas.2022.103413
|
20 |
Kenevisi M S, Yu Y F, Lin F. A review on additive manufacturing of Al-Cu (2xxx) aluminium alloys, processes and defects [J]. Mater. Sci. Technol., 2021, 37: 805
doi: 10.1080/02670836.2021.1958487
|
21 |
Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Mater., 2016, 117: 311
doi: 10.1016/j.actamat.2016.07.012
|
22 |
Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
|
23 |
Zhang H, Zhu H H, Nie X J, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
|
24 |
Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
|
25 |
Jin P, Liu Y B, Li F X, et al. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy [J]. Composites, 2021, 219B: 108921
|
26 |
Leijon F, Wachter S, Fu Z W, et al. A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti, -Zr and -Nb alloys [J]. Mater. Des., 2021, 211: 110129
doi: 10.1016/j.matdes.2021.110129
|
27 |
Yang X P, Liu C R. Machining titanium and its alloys [J]. Mach. Sci. Technol., 1999, 3: 107
doi: 10.1080/10940349908945686
|
28 |
Li J H, Zhou X L, Brochu M, et al. Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review [J]. Addit. Manuf., 2020, 31: 100989
|
29 |
Lütjering G, Williams J C, Gysler A. Microstructure and mechanical properties of titanium alloys [A]. Microstructure and Properties of Materials [M]. Singapore: World Scientific, 2000: 1
|
30 |
Wei K W, Zeng X Y, Huang G, et al. Selective laser melting of Ti-5Al-2.5Sn alloy with isotropic tensile properties: The combined effect of densification state, microstructural morphology, and crystallographic orientation characteristics [J]. J. Mater. Process. Technol., 2019, 271: 368
doi: 10.1016/j.jmatprotec.2019.04.003
|
31 |
Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater., 2015, 87: 309
doi: 10.1016/j.actamat.2014.12.054
|
32 |
Zhao D L, Han C J, Li Y, et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting [J]. J. Alloys Compd., 2019, 804: 288
doi: 10.1016/j.jallcom.2019.06.307
|
33 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
34 |
Alcisto J, Enriquez A, Garcia H, et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V [J]. J. Mater. Eng. Perform., 2011, 20: 203
doi: 10.1007/s11665-010-9670-9
|
35 |
Amsterdam E, Kool G A. High cycle fatigue of laser beam deposited Ti-6Al-4V and Inconel 718 [A]. ICAF 2009, Bridging the gap between theory and operational practice [M]. Dordrecht: Springer, 2009: 1261
|
36 |
Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, A616: 1
|
37 |
Zhai Y W, Galarraga H, Lados D A. Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM [J]. Eng. Fail. Anal., 2016, 69: 3
doi: 10.1016/j.engfailanal.2016.05.036
|
38 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
39 |
Zhang T L, Huang Z H, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing [J]. Science, 2021, 374: 478
doi: 10.1126/science.abj3770
pmid: 34672735
|
40 |
Gong X Y, Yabansu Y C, Collins P C, et al. Evaluation of Ti-Mn alloys for additive manufacturing using high-throughput experimental assays and gaussian process regression [J]. Materials, 2020, 13: 4641
doi: 10.3390/ma13204641
|
41 |
Svetlizky D, Zheng B L, Vyatskikh A, et al. Laser-based directed energy deposition (DED-LB) of advanced materials [J]. Mater. Sci. Eng., 2022, A840: 142967
|
42 |
Haghdadi N, Laleh M, Moyle M, et al. Additive manufacturing of steels: A review of achievements and challenges [J]. J. Mater. Sci., 2021, 56: 64
doi: 10.1007/s10853-020-05109-0
|
43 |
Karlsson D, Chou C Y, Pettersson N H, et al. Additive manufacturing of the ferritic stainless steel SS441 [J]. Addit. Manuf., 2020, 36: 101580
|
44 |
Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting [J]. J. Nucl. Mater., 2016, 470: 170
doi: 10.1016/j.jnucmat.2015.12.034
|
45 |
Casati R, Lemke J N, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting [J]. Metals, 2016, 6 :218
doi: 10.3390/met6090218
|
46 |
Krell J, Röttger A, Geenen K, et al. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting [J]. J. Mater. Process. Technol., 2018, 255: 679
doi: 10.1016/j.jmatprotec.2018.01.012
|
47 |
Durga A, Pettersson N H, Malladi S B A, et al. Grain refinement in additively manufactured ferritic stainless steel by in situ inoculation using pre-alloyed powder [J]. Scr. Mater., 2021, 194: 113690
doi: 10.1016/j.scriptamat.2020.113690
|
48 |
Benjamin D, Kirkpatrick C W. Properties and Selection, Stainless Steels, Tool Materials and Special Purpose Metals[M]. 9th Ed., Metals Park, Ohio: American Society for Metals, 1980: 1
|
49 |
Suryawanshi J, Prashanth K G, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2017, A696: 113
|
50 |
Wang Y M, Voisin T, Mckeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
51 |
Yin Y J, Sun J Q, Guo J, et al. Mechanism of high yield strength and yield ratio of 316L stainless steel by additive manufacturing [J]. Mater. Sci. Eng., 2019, A744: 773
|
52 |
Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties [J]. Mater. Sci. Eng., 2020, A772: 138633
|
53 |
Ren B, Lu D, Zhou R, et al. Preparation and mechanical properties of selective laser melted H13 steel [J]. J. Mater. Res., 2019, 34: 1415
doi: 10.1557/jmr.2019.10
|
54 |
Zhu Y T, Wu X L. Heterostructured materials [J]. Prog. Mater. Sci., 2023, 131: 101019
doi: 10.1016/j.pmatsci.2022.101019
|
55 |
Jebaraj A V, Ajaykumar L, Deepak C R, et al. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications—A recent review [J]. J. Adv. Res., 2017, 8: 183
doi: 10.1016/j.jare.2017.01.002
pmid: 28203458
|
56 |
Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility [J]. Mater. Sci. Eng., 2016, A665: 59
|
57 |
Hengsbach F, Koppa P, Duschik K, et al. Duplex stainless steel fabricated by selective laser melting—Microstructural and mechanical properties [J]. Mater. Des., 2017, 133: 136
doi: 10.1016/j.matdes.2017.07.046
|
58 |
Li H K, Thomas S, Hutchinson C. Delivering microstructural complexity to additively manufactured metals through controlled mesoscale chemical heterogeneity [J]. Acta Mater., 2022, 226: 117637
doi: 10.1016/j.actamat.2022.117637
|
59 |
Sun S H, Ishimoto T, Hagihara K, et al. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting [J]. Scr. Mater., 2019, 159: 89
doi: 10.1016/j.scriptamat.2018.09.017
|
60 |
Mower T M, Long M J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials [J]. Mater. Sci. Eng., 2016, A651: 198
|
61 |
Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel [J]. Mater. Sci. Eng., 2015, A644: 171
|
62 |
Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
doi: 10.1016/j.addma.2018.10.032
|
63 |
Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
doi: 10.1016/j.phpro.2011.03.033
|
64 |
Suryawanshi J, Prashanth K G, Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3 D printed maraging steel through selective laser melting [J]. J. Alloys Compd., 2017, 725: 355
doi: 10.1016/j.jallcom.2017.07.177
|
65 |
Tan C L, Zhou K S, Kuang M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions [J]. Sci. Technol. Adv. Mater., 2018, 19: 746
doi: 10.1080/14686996.2018.1527645
|
66 |
Deb Nath S, Irrinki H, Gupta G, et al. Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion [J]. Powder Technol., 2019, 343: 738
doi: 10.1016/j.powtec.2018.11.075
|
67 |
Alam M K, Mehdi M, Urbanic R J, et al. Mechanical behavior of additive manufactured AISI 420 martensitic stainless steel [J]. Mater. Sci. Eng., 2020, A773: 138815
|
68 |
Kudzal A, Mcwilliams B, Hofmeister C, et al. Effect of scan pattern on the microstructure and mechanical properties of powder bed fusion additive manufactured 17-4 stainless steel [J]. Mater. Des., 2017, 133: 205
doi: 10.1016/j.matdes.2017.07.047
|
69 |
Murr L E, Martinez E, Hernandez J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting [J]. J. Mater. Res. Technol, 2012, 1: 167
doi: 10.1016/S2238-7854(12)70029-7
|
70 |
Shang F, Chen X Q, Wang Z Y, et al. The microstructure, mechanical properties, and corrosion resistance of UNS S32707 hyper-duplex stainless steel processed by selective laser melting [J]. Metals, 2019, 9: 1012
doi: 10.3390/met9091012
|
71 |
Baghdadchi A, Hosseini V A, Valiente Bermejo M A, et al. Wire laser metal deposition of 22%Cr duplex stainless steel: As-deposited and heat-treated microstructure and mechanical properties [J]. J. Mater. Sci., 2022, 57: 9556
doi: 10.1007/s10853-022-06878-6
|
72 |
Kunz J, Boontanom A, Herzog S, et al. Influence of hot isostatic pressing post-treatment on the microstructure and mechanical behavior of standard and super duplex stainless steel produced by laser powder bed fusion [J]. Mater. Sci. Eng., 2020, A794: 139806
|
73 |
Mally L, Werz M, Weihe S. Feasibility study on additive manufacturing of ferritic steels to meet mechanical properties of safety relevant forged parts [J]. Materials, 2022, 15: 383
doi: 10.3390/ma15010383
|
74 |
Nie J J, Wei L, Li D-L, et al. High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L-SS431 graded material [J]. Addit. Manuf., 2020, 35: 101295
|
75 |
Li Q Q, Wen Y J, Zhang B C, et al. Research progress of functional graded alloy prepared by additive manufacturing technology [J]. J. Mech. Eng., 2021, 57: 184
doi: 10.3901/JME.2021.22.184
|
|
李祺祺, 温耀杰, 张百成 等. 梯度功能合金的增材制造技术研究进展 [J]. 机械工程学报, 2021, 57: 184
doi: 10.3901/JME.2021.22.184
|
76 |
Wang D, Deng G W, Yang Y Q, et al. Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials [J]. J. Cent. South Univ., 2021, 28: 1155
doi: 10.1007/s11771-021-4687-9
|
77 |
Zhang B C, Zhang L, Ren S B, et al. Device and method for preparing gradient material based on selective laser melting technology [P]. Chin Pat, CN108480630B, 2019
|
|
张百成, 章 林, 任淑彬 等. 一种基于选区激光熔化技术制备梯度材料的装置及方法 [P]. 中国专利, CN108480630B, 2019)
|
78 |
Collins P C, Banerjee R, Banerjee S, et al. Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys [J]. Mater. Sci. Eng., 2003, A352: 118
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|