|
|
Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting |
YANG Chao1(), LU Haizhou2(), MA Hongwei1, CAI Weisi1 |
1.National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China 2.School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China |
|
Cite this article:
YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. Acta Metall Sin, 2023, 59(1): 55-74.
|
Abstract The postprocessing/machining of NiTi shape memory alloys (SMAs) is extremely challenging and difficult due to their low thermal conductivity and the high reactivity of ready-made NiTi parts. As a typical metal additive manufacturing technology, selective laser melting (SLM) offers significant advantages and can directly fabricate complex metallic parts, effectively address the problems of cold workability and machinability for NiTi parts. By establishing the relationship between processing parameters, microstructure, functional properties, and revealing the underlying mechanisms for altered phase transformation behavior and functional properties of SLM NiTi SMAs, it can serve as a theoretical foundation for expanding the applications of SLM NiTi SMAs. As a result, this paper comprehensively evaluates the formability, phase transformation behavior, microstructure, mechanical properties, and thermomechanical properties of SLM NiTi SMAs. Additionally, the design of SLM porous NiTi SMAs, as well as their biocompatibility, are discussed. Eventually, the future development trend and critical problems in studying SLM NiTi SMAs are investigated.
|
Received: 31 August 2022
|
|
Fund: Key-Area Research and Development Program of Guangdong Province(2020B090923001);National Natural Science Foundation of China(U19A2085) |
1 |
Ma J, Karaman I, Noebe R D. High temperature shape memory alloys [J]. Int. Mater. Rev., 2010, 55: 257
doi: 10.1179/095066010X12646898728363
|
2 |
Zheng Y F, Liu Y N. Nickel-Titanium Alloy for Engineering[M]. Beijing: Science Press, 2014: 1
|
|
郑玉峰, Liu Y N. 工程用镍钛合金[M]. 北京: 科学出版社, 2014: 1
|
3 |
Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
|
4 |
Xiao F, Chen H, Jin X J. Research progress in elastocaloric cooling effect basing on shape memory alloy [J]. Acta Metall. Sin., 2021, 57: 29
|
|
肖 飞, 陈 宏, 金学军. 形状记忆合金弹热制冷效应的研究现状 [J]. 金属学报, 2021, 57: 29
|
5 |
Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
|
6 |
Oliveira J P, Miranda R M, Braz Fernandes F M. Welding and joining of NiTi shape memory alloys: A review [J]. Prog. Mater. Sci., 2017, 88: 412
doi: 10.1016/j.pmatsci.2017.04.008
|
7 |
Ahadi A, Sun Q P. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction [J]. Acta Mater., 2015, 90: 272
doi: 10.1016/j.actamat.2015.02.024
|
8 |
Tan C L, Zou J, Li S, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures [J]. Int. J. Mach. Tools Manuf., 2021, 167: 103764
doi: 10.1016/j.ijmachtools.2021.103764
|
9 |
Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
doi: 10.1016/j.actamat.2015.12.017
|
10 |
Wang X B, Speirs M, Kustov S, et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect [J]. Scr. Mater., 2018, 146: 246
doi: 10.1016/j.scriptamat.2017.11.047
|
11 |
Han C J, Fang Q H, Shi Y S, et al. Recent advances on high-entropy alloys for 3D printing [J]. Adv. Mater., 2020, 32: 1903855
doi: 10.1002/adma.201903855
|
12 |
Lu H Z, Ma H W, Luo X, et al. Influence of laser scanning speed on phase transformation and superelasticity of 4D-printed Ti-Ni shape memory alloys [J]. J. Mech. Eng., 2020, 56(15): 65
doi: 10.3901/JME.2020.15.065
|
|
卢海洲, 马宏伟, 罗 炫 等. 激光扫描速度对4D打印钛镍形状记忆合金相转变和超弹性的影响 [J]. 机械工程学报, 2020, 56(15): 65
doi: 10.3901/JME.2020.15.065
|
13 |
Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys [J]. Acta Mater., 2010, 58: 3444
doi: 10.1016/j.actamat.2010.02.019
|
14 |
Shi G F, Li L X, Yu Z L, et al. The interaction effect of process parameters on the phase transformation behavior and tensile properties in additive manufacturing of Ni-rich NiTi alloy [J]. J. Manuf. Process., 2022, 77: 539
doi: 10.1016/j.jmapro.2022.03.027
|
15 |
Wang X B, Yu J Y, Liu J W, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting [J]. Addit. Manuf., 2020, 36: 101545
|
16 |
Franco B E, Ma J, Loveall B, et al. A sensory material approach for reducing variability in additively manufactured metal parts [J]. Sci. Rep., 2017, 7: 3604
doi: 10.1038/s41598-017-03499-x
pmid: 28620228
|
17 |
Zhang B C, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder [J]. J. Mater. Sci. Technol., 2013, 29: 863
doi: 10.1016/j.jmst.2013.05.006
|
18 |
Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium [J]. Mater. Charact., 2014, 94: 189
doi: 10.1016/j.matchar.2014.05.017
|
19 |
Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
|
20 |
Xue L, Atli K C, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity [J]. Acta Mater., 2022, 229: 117781
doi: 10.1016/j.actamat.2022.117781
|
21 |
Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders [J]. J. Mater. Process. Technol., 2019, 271: 152
doi: 10.1016/j.jmatprotec.2019.03.025
|
22 |
Lu H Z, Ma H W, Cai W S, et al. Altered phase transformation behaviors and enhanced bending shape memory property of NiTi shape memory alloy via selective laser melting [J]. J. Mater. Process. Technol., 2022, 303: 117546
doi: 10.1016/j.jmatprotec.2022.117546
|
23 |
Lu H Z, Chen T, Liu L H, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing [J]. Virtual Phys. Prototyp., 2022, 17: 563
doi: 10.1080/17452759.2022.2053821
|
24 |
Shen H, Zhang Q Q, Yang Y, et al. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116: 246
doi: 10.1016/j.jmst.2021.09.067
|
25 |
Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
|
26 |
Gu D D, Ma C L, Dai D H, et al. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness [J]. Virtual Phys. Prototyp., 2021, 16: S19
doi: 10.1080/17452759.2021.1892389
|
27 |
Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting [A]. Innovative Developments in Virtual and Physical Prototyping [C]. Boca Raton: CRC Press, 2012: 291
|
28 |
Meier H, Haberland C, Frenzel J, et al. Selective laser melting of NiTi shape memory components [A]. Innovative Development in Design and Manufacturing [C]. Boca Raton: CRC Press, 2010: 233
|
29 |
Saedi S, Turabi A S, Taheri Andani M, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting [J]. J. Alloys Compd., 2016, 677: 204
doi: 10.1016/j.jallcom.2016.03.161
|
30 |
Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2017, 68: 224
doi: 10.1016/j.jmbbm.2017.01.047
|
31 |
Ravari M R K, Esfahani S N, Andani M T, et al. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures [J]. Smart Mater. Struct., 2016, 25: 025008
|
32 |
Hamilton R F, Bimber B A, Taheri Andani M, et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition [J]. J. Mater. Process. Technol., 2017, 250: 55
doi: 10.1016/j.jmatprotec.2017.06.027
|
33 |
Farhang B, Ravichander B B, Venturi F, et al. Study on variations of microstructure and metallurgical properties in various heat-affected zones of SLM fabricated nickel-titanium alloy [J]. Mater. Sci. Eng., 2020, A774: 138919
|
34 |
Saghaian S E, Amerinatanzi A, Moghaddam N S, et al. Mechanical and shape memory properties of triply periodic minimal surface (TPMS) NiTi structures fabricated by selective laser melting [J]. Biol. Eng. Med., 2018, 3: 1
|
35 |
Cao Y X, Zhou X L, Cong D Y, et al. Large tunable elastocaloric effect in additively manufactured Ni-Ti shape memory alloys [J]. Acta Mater., 2020, 194: 178
doi: 10.1016/j.actamat.2020.04.007
|
36 |
Dadbakhsh S, Speirs M, Kruth J P, et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts [J]. Adv. Eng. Mater., 2014, 16: 1140
doi: 10.1002/adem.201300558
|
37 |
Chen W L, Yang Q, Huang S K, et al. Compression behavior of graded NiTi gyroid-structures fabricated by laser powder bed fusion additive manufacturing under monotonic and cyclic loading [J]. JOM, 2021, 73: 4154
doi: 10.1007/s11837-021-04938-x
|
38 |
Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich Ti-Ni lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
|
39 |
Bartolomeu F, Costa M M, Alves N, et al. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2020, 110: 103891
doi: 10.1016/j.jmbbm.2020.103891
|
40 |
Xiong Z W, Li M, Hao S J, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material [J]. ACS Appl. Mater. Interfaces, 2021, 13: 39915
doi: 10.1021/acsami.1c11226
|
41 |
Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
|
42 |
Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect [J]. Corros. Sci., 2020, 175: 108891
doi: 10.1016/j.corsci.2020.108891
|
43 |
Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect [J]. J. Mater. Sci. Technol., 2019, 35: 2238
doi: 10.1016/j.jmst.2019.05.015
|
44 |
Yu Z L, Xu Z Z, Guo Y T, et al. Analysis of microstructure, mechanical properties, wear characteristics and corrosion behavior of SLM-NiTi under different process parameters [J]. J. Manuf. Process., 2022, 75: 637
doi: 10.1016/j.jmapro.2022.01.010
|
45 |
Lu H Z, Liu L H, Yang C, et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101: 205
doi: 10.1016/j.jmst.2021.06.019
|
46 |
Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing [J]. Mater. Sci. Eng., 2019, A763: 138166
|
47 |
Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting [J]. Acta Mater., 2021, 219: 117261
doi: 10.1016/j.actamat.2021.117261
|
48 |
Khanlari K, Shi Q, Li K F, et al. Effects of printing volumetric energy densities and post-processing treatments on the microstructural properties, phase transformation temperatures and hardness of near-equiatomic NiTinol parts fabricated by a laser powder bed fusion technique [J]. Intermetallics, 2021, 131: 107088
doi: 10.1016/j.intermet.2021.107088
|
49 |
Yang Y, Zhan J B, Sun Z Z, et al. Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy [J]. J. Alloys Compd., 2019, 804: 220
doi: 10.1016/j.jallcom.2019.06.340
|
50 |
Yang Y, Zhan J B, Sui J B, et al. Functionally graded NiTi alloy with exceptional strain-hardening effect fabricated by SLM method [J]. Scr. Mater., 2020, 188: 130
doi: 10.1016/j.scriptamat.2020.07.019
|
51 |
Ehsan Saghaian S, Nematollahi M, Toker G, et al. Effect of hatch spacing and laser power on microstructure, texture, and thermomechanical properties of laser powder bed fusion (L-PBF) additively manufactured NiTi [J]. Opt. Laser Technol., 2022, 149: 107680
doi: 10.1016/j.optlastec.2021.107680
|
52 |
Gu D D, Ma C L. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites [J]. Appl. Surf. Sci., 2018, 441: 862
doi: 10.1016/j.apsusc.2018.01.317
|
53 |
Guo W Q, Sun Z, Yang Y, et al. Study on the junction zone of NiTi shape memory alloy produced by selective laser melting via a stripe scanning strategy [J]. Intermetallics, 2020, 126: 106947
doi: 10.1016/j.intermet.2020.106947
|
54 |
Safdel A, Elbestawi M A. New insights on the laser powder bed fusion processing of a NiTi alloy and the role of dynamic restoration mechanisms [J]. J. Alloys Compd., 2021, 885: 160971
doi: 10.1016/j.jallcom.2021.160971
|
55 |
Yu Z L, Xu Z Z, Guo Y T, et al. Study on properties of SLM-NiTi shape memory alloy under the same energy density [J]. J. Mater. Res. Technol., 2021, 13: 241
doi: 10.1016/j.jmrt.2021.04.058
|
56 |
Yu Z L, Xu Z Z, Liu R Y, et al. Prediction of SLM-NiTi transition temperatures based on improved Levenberg-Marquardt algorithm [J]. J. Mater. Res. Technol., 2021, 15: 3349
doi: 10.1016/j.jmrt.2021.09.149
|
57 |
Ye D, Li S F, Misra R D K, et al. Ni-loss compensation and thermomechanical property recovery of 3D printed NiTi alloys by pre-coating Ni on NiTi powder [J]. Addit. Manuf., 2021, 47: 102344
|
58 |
Oliveira J P, Cavaleiro A J, Schell N, et al. Effects of laser processing on the transformation characteristics of NiTi: A contribute to additive manufacturing [J]. Scr. Mater., 2018, 152: 122
doi: 10.1016/j.scriptamat.2018.04.024
|
59 |
Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion [J]. Addit. Manuf., 2016, 12: 178
|
60 |
Speirs M, Wang X, Van Baelen S, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM [J]. Shape Mem. Superelast., 2016, 2: 310
|
61 |
Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi [J]. Acta Mater., 2018, 144: 552
doi: 10.1016/j.actamat.2017.10.072
|
62 |
Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment [J]. Sci. Rep., 2019, 9: 41
doi: 10.1038/s41598-018-36641-4
pmid: 30631084
|
63 |
Lu H Z, Ma H W, Luo X, et al. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting [J]. J. Mater. Res. Technol., 2021, 15: 6797
doi: 10.1016/j.jmrt.2021.11.112
|
64 |
Taheri Andani M, Haberland C, Walker J M, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2661
doi: 10.1177/1045389X16641199
|
65 |
Gan J, Duan L C, Li F, et al. Effect of laser energy density on the evolution of Ni4Ti3 precipitate and property of NiTi shape memory alloys prepared by selective laser melting [J]. J. Alloys Compd., 2021, 869: 159338
doi: 10.1016/j.jallcom.2021.159338
|
66 |
Yang Y, Wu Z G, Shen B Y, et al. Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy [J]. J. Mater. Process. Technol., 2021, 296: 117177
doi: 10.1016/j.jmatprotec.2021.117177
|
67 |
Yi X Y, Shen G J, Meng X L, et al. The higher compressive strength (TiB + La2O3)/Ti-Ni shape memory alloy composite with the larger recoverable strain [J]. Compos. Commun., 2021, 23: 100583
doi: 10.1016/j.coco.2020.100583
|
68 |
Farvizi M, Akbarpour M R, Ahn D H, et al. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles [J]. J. Alloys Compd., 2016, 688: 803
doi: 10.1016/j.jallcom.2016.06.299
|
69 |
Zhou Q, Hayat M D, Chen G, et al. Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties [J]. Mater. Sci. Eng., 2019, A744: 290
|
70 |
Ren Q H, Chen C Y, Lu Z J, et al. Effect of a constant laser energy density on the evolution of microstructure and mechanical properties of NiTi shape memory alloy fabricated by laser powder bed fusion [J]. Opt. Laser Technol., 2022, 152: 108182
doi: 10.1016/j.optlastec.2022.108182
|
71 |
Gustmann T, Gutmann F, Wenz F, et al. Properties of a superelastic NiTi shape memory alloy using laser powder bed fusion and adaptive scanning strategies [J]. Prog. Addit. Manuf., 2020, 5: 11
doi: 10.1007/s40964-020-00118-6
|
72 |
McCue I D, Valentino G M, Trigg D B, et al. Controlled shape-morphing metallic components for deployable structures [J]. Mater. Des., 2021, 208: 109935
doi: 10.1016/j.matdes.2021.109935
|
73 |
Lv J R, Shen H Y, Fu J Z. Fabrication of multi-functional Ni-Ti alloys by laser powder bed fusion [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 357
doi: 10.1007/s00170-021-08039-6
|
74 |
Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy [J]. Materialia, 2019, 6: 100305
doi: 10.1016/j.mtla.2019.100305
|
75 |
Shayesteh Moghaddam N, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting [J]. Mater. Sci. Eng., 2018, A724: 220
|
76 |
Jiang F, Liu Y N, Yang H, et al. Effect of ageing treatment on the deformation behaviour of Ti-50.9at.%Ni [J]. Acta Mater., 2009, 57: 4773
doi: 10.1016/j.actamat.2009.06.059
|
77 |
Miyazaki S, Kohiyama Y, Otsuka K, et al. Effects of several factors on the ductility of the Ti-Ni alloy [J]. Mater. Sci. Forum., 1991, 56-58: 765
doi: 10.4028/www.scientific.net/MSF.56-58.765
|
78 |
Pushin V G, Valiev R Z, Zhu Y T, et al. Effect of severe plastic deformation on the behavior of Ti-Ni shape memory alloys [J]. Mater. Trans., 2006, 47: 694
doi: 10.2320/matertrans.47.694
|
79 |
Saedi S, Turabi A S, Andani M T, et al. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys [J]. Mater. Sci. Eng., 2017, A686: 1
|
80 |
Sam J, Franco B, Ma J, et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys [J]. Scr. Mater., 2018, 146: 164
doi: 10.1016/j.scriptamat.2017.11.013
|
81 |
Ahadi A, Sun Q P. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi [J]. Acta Mater., 2014, 76: 186
doi: 10.1016/j.actamat.2014.05.007
|
82 |
Biffi C A, Fiocchi J, Valenza F, et al. Selective laser melting of Ni-Ti shape memory alloy: Processability, microstructure, and superelasticity [J]. Shape Mem. Superelast., 2020, 6: 342
|
83 |
Saedi S, Turabi A S, Andani M T, et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting [J]. Smart Mater. Struct., 2016, 25: 035005
|
84 |
Walker J M, Haberland C, Taheri Andani M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2653
doi: 10.1177/1045389X16635848
|
85 |
Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy [J]. Mater. Sci. Eng., 2016, A650: 225
|
86 |
Miyazaki S. My experience with Ti-Ni-based and Ti-based shape memory alloys [J]. Shape Mem. Superelast., 2017, 3: 279
|
87 |
Zhang L C, Chen L Y. A review on biomedical titanium Alloys: Recent progress and prospect [J]. Adv. Eng. Mater., 2019, 21: 1801215
doi: 10.1002/adem.201801215
|
88 |
Rho J Y, Ashman R B, Turner C H. Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements [J]. J. Biomech., 1993, 26: 111
pmid: 8429054
|
89 |
Khanlari K, Shi Q, Yan X C, et al. Printing of NiTinol parts with characteristics respecting the general microstructural, compositional and mechanical requirements of bone replacement implants [J]. Mater. Sci. Eng., 2022, A839: 142839
|
90 |
Yang Q, Sun K H, Yang C, et al. Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 858: 157674
doi: 10.1016/j.jallcom.2020.157674
|
91 |
Chen T, Cai W S, Liu Z, et al. In-situ dual-deoxidation design of advanced titanium matrix composites by pressureless sintering [J]. Composites, 2022, 244B: 110202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|