Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting
YANG Chao1(), LU Haizhou2(), MA Hongwei1, CAI Weisi1
1.National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China 2.School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
Cite this article:
YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. Acta Metall Sin, 2023, 59(1): 55-74.
The postprocessing/machining of NiTi shape memory alloys (SMAs) is extremely challenging and difficult due to their low thermal conductivity and the high reactivity of ready-made NiTi parts. As a typical metal additive manufacturing technology, selective laser melting (SLM) offers significant advantages and can directly fabricate complex metallic parts, effectively address the problems of cold workability and machinability for NiTi parts. By establishing the relationship between processing parameters, microstructure, functional properties, and revealing the underlying mechanisms for altered phase transformation behavior and functional properties of SLM NiTi SMAs, it can serve as a theoretical foundation for expanding the applications of SLM NiTi SMAs. As a result, this paper comprehensively evaluates the formability, phase transformation behavior, microstructure, mechanical properties, and thermomechanical properties of SLM NiTi SMAs. Additionally, the design of SLM porous NiTi SMAs, as well as their biocompatibility, are discussed. Eventually, the future development trend and critical problems in studying SLM NiTi SMAs are investigated.
Fig.1 Research content and outline of selective laser melting (SLM) NiTi shape memory alloys (SMAs)
Fig.2 Feedstock powders to fabricate NiTi SMAs by SLM (a, b) pre-mixed Ni and Ti powders[21] (c) pre-alloyed Ni50.2Ti49.8 powder[22] (d-f) NiTi powders modified by Ni particles[23,24] (Inset in Fig.2d is particle size distribution of modified powders, and D50 is the average size of modified powders)
Process parameter
P / W
v / (mm·s-1)
h / mm
t / μm
E / (J·mm-3)
Ref.
characteristic
High P with high v
200-375
1000-1400
60
30
79-208
[26]
250
1250
120
30
55.5
[27-34]
200
1500
40-80
40
42-83
[35]
250
900-1100
60-75
30
123-126
[36]
250
1100
120
30
63
[37]
Low P with low v
50-120
100-300
45-150
20
55-675
[9]
70
105
100
30
222
[23]
120
250
50
40
240
[24]
40
160-280
50
30
95-111
[36]
60-120
150-600
75
30
44-267
[8,38]
90
600
90
30
56
[39]
120
500
80
30
110
[40-43]
90
414
120
30
61
[44]
70
80-300
100
30
78-292
[45-47]
50
200-300
120
30
46-69
[48]
60
300-480
110
25
46-73
[49,50]
50, 100
125
40-240
30
56-667
[51]
110, 120
150-350
50
30
210-533
[52]
Other
120
800
110
30
46
[53]
50-250
250-1250
80-120
30
40-125
[54]
75-200
400-1200
80-120
20-40
47-87
[55,56]
60-240
500
80
30
50-200
[57]
Table 1 Process parameters of SLM NiTi SMAs[8,9,23,24,26-57]
Fig.3 Variation of formability in SLM NiTi SMAs with different energy densities (low power and low scanning speed) (a)[9], SLM NiTi SMAs with different energy densities (high power and high scanning speed) (b)[26], diagrams between the process parameters of SLM Ni50.8Ti49.2 (c)[19] and Ni50.1Ti49.9 (d)[19] SMAs and formability predicted by Eagle-Tsai model (Pentagram shape in orange is SLM NiTi SMAs fabricated with low power and low scanning speed, pentagram shape in red is SLM NiTi SMAs fabricated with high power and high scanning speed)
Fig.4 Defects in SLM NiTi SMAs (a-d)[19] and effect of energy density on formability of SLM NiTi SMAs (e-h)[22]
Fig.5 DSC curves of SLM Ni50.6Ti49.4 with same energy density for as-fabricated (a)[10] and solution treated at 1000oC for 2 h (b)[10]; DSC curves of SLM Ni50.6Ti49.4 with altered laser power (c)[15]; DSC curves of as-fabricated (d)[35], solution treated (e)[35], and aged (f)[35] Ni51.4Ti48.6 fabricated with different hatches
Fig.6 TEM images of SLM Ni50.9Ti49.1 fabricated at different hatches showing subgrain structure and nanoprecipitates (a, c, e) and dislocations (b, d, f)[16] (a, b) center of the laser track at 35 μm hatch (c, d) center of the laser track at 120 μm hatch (e, f) edge of the laser track at 120 μm hatch
Fig.7 TEM images, STEM images, and selected area electron diffraction pattern of SLM NiTi alloys after heat treatment (a-d) TEM images of SLM Ni50.4Ti49.6 after solution treatment (at 1000oC for 1 h) and ageing (at 350oC/450oC for 1 h)[47] (e) STEM-HAADF image of SLM Ni51.4Ti48.6 after solution treatment (at 950oC for 12 h) and ageing (at 450oC for 5 h)[35] (f-h) STEM-HAADF image and selected area electron diffraction pattern of SLM Ni51.1Ti48.9 after ageing (at 400oC for 1 h)[19]
Fig.8 Summaries of mechanical properties of NiTi SMAs (a) NiTi SMAs by SLM[24,26,27,56,63-66], NiTi and NiTi-based composites by hot pressed sintering (HPS) and hot isostatic pressing (HIP)[67,68], and NiTi SMAs by selective electron beam melting[69] under compression (b) NiTi SMAs by SLM under tension[14,15,19,22,40-43,45,46,53,55,56,65,70-75]
Fig.9 Compression superelastic behaviors and cyclic superelastic behaviers of as-fabricated SLM NiTi SMAs (a) compression superelastic behaviors of Ni50.8Ti49.2 under the same energy density (55.5 J/mm3)[61] (Af—austenite transformation finish temperature) (b) compression superelastic behaviors of Ni50.8Ti49.2 under different laser scanning hatches[62] (c-f) cyclic superelastic behaviors of Ni50.8Ti49.2 under different laser powers and scanning speeds[62]
Fig.10 Compressive superelasticity of SLM NiTi SMAs (a) Ni50.8Ti49.2 in as-fabricated and different heat-treated states[29] (b) superelasticity of Ni50.8Ti49.2 in heat-treated at 350oC for 1 h[79] (c) single superelasticity of Ni51.4Ti48.6 in as-fabricated, solid solution, and ageing states[35] (σ—stress, ε—strain) (d-f) superelasticities of Ni51.4Ti48.6 in as-fabricated, solid solution, and ageing states during 10 cyc[35]
Fig.11 Uniaxial tensile mechanical properties and tensile superelasticity of SLM NiTi SMAs (a) uniaxial tensile mechanical properties of SLM Ni50.6Ti49.4 (at austenite state) at different laser powers[15] (b) uniaxial tensile mechanical properties of SLM Ni50.4Ti49.6 at martensite state[43] (c, d) tensile driving behaviors at different laser scanning hatches[80] (εact—actuation strain, εirr—irrecoverable strain) (e, f) cyclic tensile superelasticities of SLM Ni50.8Ti49.2 with and without heat treatment[19] (T—temperature) (g, h) cyclic tensile superelasticities of SLM Ni50.4Ti49.6 with different heat treatments[47]
NiTi (atomic
Feedstock
Equipment type
Compressive
Recovery
Cycle
Ref.
fraction / %)
stress
strain
number
MPa
%
Ni49.4Ti50.6 + Ni nanoparticles
Pre-alloyed powder
Concept Laser M2 Cusing
800
3.52-3.54
13
[23]
Ni53Ti47
Pre-alloyed NiTi powder (15-53 μm) +
Eplus-M100T
700-1800
4.0-9.4
4
[24]
coated Ni powder (1.5 μm)
Ni50.6Ti49.4
Pre-alloyed powder (15-53 μm)
An in-house SLM
800
5.6-6.7
10
[26]
machine (SLM-150)
Ni50.8Ti49.2
Pre-alloyed powder (25-75 μm)
3D Systems Phenix
1000
2.64-4.20
10
[29]
Ni51.4Ti48.6
Pre-alloyed powder (30-45 μm)
SLM-YZ250
600-850
2.2-4.6
10
[35]
Ni50.8Ti49.2
Pre-alloyed powder (D50 = 50 µm)
3D Systems Phenix PXM
800
2.23-4.56
10
[51]
Ni50.8Ti49.2
Pre-alloyed powder (25-75 μm)
3D Systems Phenix
800
2.29-5.50
10
[61]
Ni50.8Ti49.2
Pre-alloyed powder (25-75 μm)
3D Systems Phenix
600
3.40-5.20
10
[62]
Ni50.7Ti49.3
Pre-alloyed powder (D50 = 37 μm)
Solutions 280
700
3.7-7.4
10
[70]
Ni50.8Ti49.2
Pre-alloyed powder (D50 = 50 μm)
3D Systems Phenix
280-1750
1.5-5.5
4
[79]
Ni50.8Ti49.2
Pre-alloyed powder
Renishaw AM400
500/900
5.5/6
1
[82]
Ni50.8Ti49.2
Pre-alloyed powder (25-75 μm)
3D Systems Phenix PXM
300
3.0-3.4
1
[83]
Table 2 Recovery strains of SLM NiTi SMAs under compression[23,24,26,29,35,51,61,62,70,79,82,83]
NiTi (atomic
Feedstock
Equipment type
Tensile
Recovery
Cycle number
Ref.
fraction / %)
stress
strain
MPa
%
NiTi
Pre-alloyed powder
Eplus-M100T
500-700
1.41-2.14
10
[14]
(15-53 μm)
Ni51.1Ti48.9 and
Pre-alloyed powder
3D Systems ProX DMP 200
300-550
1.0-4.5
1 and incremental loading
[19]
Ni50.3Ti49.7
(D50 = 29 μm)
Ni51.2Ti48.8
Pre-alloyed powder
3D Systems ProX DMP 200
300-400
1-6
Incremental loading
[20]
Ni50.4Ti49.6
Pre-alloyed powder
Concept Laser M2 Cusing
450
0.77-2.31
20
[47]
(D50 = 37 μm)
Ni50.92Ti49.08
Pre-alloyed powder
Concept Laser Mlab-R
100-500
0.26-2.25
Incremental loading
[49]
(D50 = 40.6 μm)
Ni50.8Ti49.2
Pre-alloyed powder
BLT S210
400/500
2/4
1
[56]
(15-53 μm)
Ni50-51Ti49-50
Pre-alloyed powder
Renishaw AM400
300-550
2-4
8
[72]
Table 3 Recovery strains of SLM NiTi SMAs under tension[14,19,20,47,49,56,72]
Fig.12 Comparisons of mechanical properties of NiTi SMAs, stainless steel, and human tissues (a), isometric view of the CAD model and image of SLM porous Ni45.2Ti54.8 (b)[38], CAD models with three different pore sizes and image of SLM porous Ni50.4Ti49.6 (c)[63], cellular lattice structure and image of SLM porous Ni50.6Ti49.4 (d)[90], and CAD models and image of the SLM Ni50.3Ti49.7 gyroid cellular structure (e) (U-GCS: uniform gyroid cellular structure, Y-GCS: graded gyroid structure with the density gradient along y-axis, Z-GCS: graded gyroid structure with density along gradient z-axis)[37]
Fig.13 Mechanical properties of porous NiTi SMAs with different pore sizes (a)[63], mechanical properties of porous NiTi SMAs with different structures (b-d)[37], shape memory effect of porous NiTi SMAs with different pore sizes (εrec—recoverable strain) (e, f)[63], and superelasticities of porous NiTi SMAs with different strut thicknesses (g, h)[90]
Fig.14 Biocompatibility of SLM porous NiTi SMAs[63] (a) fluorescence images of live cell viability of MC3T3-E1 cells seeded on NiTi samples after being cultured for 1 d (The dotted circle and arrows indicate that MC3T3-E1 cells bridged the pores) (b, c) SEM images of MC3T3-E1 cells on outer (b) and inner (c) surfaces of the porous NiTi scaffolds after being cultured for 7 d in a humid environment at 37oC (The arrows indicate MC3T3-E1 cells)
1
Ma J, Karaman I, Noebe R D. High temperature shape memory alloys [J]. Int. Mater. Rev., 2010, 55: 257
doi: 10.1179/095066010X12646898728363
2
Zheng Y F, Liu Y N. Nickel-Titanium Alloy for Engineering[M]. Beijing: Science Press, 2014: 1
郑玉峰, Liu Y N. 工程用镍钛合金[M]. 北京: 科学出版社, 2014: 1
3
Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
4
Xiao F, Chen H, Jin X J. Research progress in elastocaloric cooling effect basing on shape memory alloy [J]. Acta Metall. Sin., 2021, 57: 29
Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
6
Oliveira J P, Miranda R M, Braz Fernandes F M. Welding and joining of NiTi shape memory alloys: A review [J]. Prog. Mater. Sci., 2017, 88: 412
doi: 10.1016/j.pmatsci.2017.04.008
7
Ahadi A, Sun Q P. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction [J]. Acta Mater., 2015, 90: 272
doi: 10.1016/j.actamat.2015.02.024
8
Tan C L, Zou J, Li S, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures [J]. Int. J. Mach. Tools Manuf., 2021, 167: 103764
doi: 10.1016/j.ijmachtools.2021.103764
9
Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
doi: 10.1016/j.actamat.2015.12.017
10
Wang X B, Speirs M, Kustov S, et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect [J]. Scr. Mater., 2018, 146: 246
doi: 10.1016/j.scriptamat.2017.11.047
11
Han C J, Fang Q H, Shi Y S, et al. Recent advances on high-entropy alloys for 3D printing [J]. Adv. Mater., 2020, 32: 1903855
doi: 10.1002/adma.201903855
12
Lu H Z, Ma H W, Luo X, et al. Influence of laser scanning speed on phase transformation and superelasticity of 4D-printed Ti-Ni shape memory alloys [J]. J. Mech. Eng., 2020, 56(15): 65
doi: 10.3901/JME.2020.15.065
Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys [J]. Acta Mater., 2010, 58: 3444
doi: 10.1016/j.actamat.2010.02.019
14
Shi G F, Li L X, Yu Z L, et al. The interaction effect of process parameters on the phase transformation behavior and tensile properties in additive manufacturing of Ni-rich NiTi alloy [J]. J. Manuf. Process., 2022, 77: 539
doi: 10.1016/j.jmapro.2022.03.027
15
Wang X B, Yu J Y, Liu J W, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting [J]. Addit. Manuf., 2020, 36: 101545
16
Franco B E, Ma J, Loveall B, et al. A sensory material approach for reducing variability in additively manufactured metal parts [J]. Sci. Rep., 2017, 7: 3604
doi: 10.1038/s41598-017-03499-x
pmid: 28620228
17
Zhang B C, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder [J]. J. Mater. Sci. Technol., 2013, 29: 863
doi: 10.1016/j.jmst.2013.05.006
18
Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium [J]. Mater. Charact., 2014, 94: 189
doi: 10.1016/j.matchar.2014.05.017
19
Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
20
Xue L, Atli K C, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity [J]. Acta Mater., 2022, 229: 117781
doi: 10.1016/j.actamat.2022.117781
21
Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders [J]. J. Mater. Process. Technol., 2019, 271: 152
doi: 10.1016/j.jmatprotec.2019.03.025
22
Lu H Z, Ma H W, Cai W S, et al. Altered phase transformation behaviors and enhanced bending shape memory property of NiTi shape memory alloy via selective laser melting [J]. J. Mater. Process. Technol., 2022, 303: 117546
doi: 10.1016/j.jmatprotec.2022.117546
23
Lu H Z, Chen T, Liu L H, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing [J]. Virtual Phys. Prototyp., 2022, 17: 563
doi: 10.1080/17452759.2022.2053821
24
Shen H, Zhang Q Q, Yang Y, et al. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116: 246
doi: 10.1016/j.jmst.2021.09.067
25
Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
26
Gu D D, Ma C L, Dai D H, et al. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness [J]. Virtual Phys. Prototyp., 2021, 16: S19
doi: 10.1080/17452759.2021.1892389
27
Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting [A]. Innovative Developments in Virtual and Physical Prototyping [C]. Boca Raton: CRC Press, 2012: 291
28
Meier H, Haberland C, Frenzel J, et al. Selective laser melting of NiTi shape memory components [A]. Innovative Development in Design and Manufacturing [C]. Boca Raton: CRC Press, 2010: 233
29
Saedi S, Turabi A S, Taheri Andani M, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting [J]. J. Alloys Compd., 2016, 677: 204
doi: 10.1016/j.jallcom.2016.03.161
30
Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2017, 68: 224
doi: 10.1016/j.jmbbm.2017.01.047
31
Ravari M R K, Esfahani S N, Andani M T, et al. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures [J]. Smart Mater. Struct., 2016, 25: 025008
32
Hamilton R F, Bimber B A, Taheri Andani M, et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition [J]. J. Mater. Process. Technol., 2017, 250: 55
doi: 10.1016/j.jmatprotec.2017.06.027
33
Farhang B, Ravichander B B, Venturi F, et al. Study on variations of microstructure and metallurgical properties in various heat-affected zones of SLM fabricated nickel-titanium alloy [J]. Mater. Sci. Eng., 2020, A774: 138919
34
Saghaian S E, Amerinatanzi A, Moghaddam N S, et al. Mechanical and shape memory properties of triply periodic minimal surface (TPMS) NiTi structures fabricated by selective laser melting [J]. Biol. Eng. Med., 2018, 3: 1
35
Cao Y X, Zhou X L, Cong D Y, et al. Large tunable elastocaloric effect in additively manufactured Ni-Ti shape memory alloys [J]. Acta Mater., 2020, 194: 178
doi: 10.1016/j.actamat.2020.04.007
36
Dadbakhsh S, Speirs M, Kruth J P, et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts [J]. Adv. Eng. Mater., 2014, 16: 1140
doi: 10.1002/adem.201300558
37
Chen W L, Yang Q, Huang S K, et al. Compression behavior of graded NiTi gyroid-structures fabricated by laser powder bed fusion additive manufacturing under monotonic and cyclic loading [J]. JOM, 2021, 73: 4154
doi: 10.1007/s11837-021-04938-x
38
Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich Ti-Ni lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
39
Bartolomeu F, Costa M M, Alves N, et al. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2020, 110: 103891
doi: 10.1016/j.jmbbm.2020.103891
40
Xiong Z W, Li M, Hao S J, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material [J]. ACS Appl. Mater. Interfaces, 2021, 13: 39915
doi: 10.1021/acsami.1c11226
41
Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
42
Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect [J]. Corros. Sci., 2020, 175: 108891
doi: 10.1016/j.corsci.2020.108891
43
Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect [J]. J. Mater. Sci. Technol., 2019, 35: 2238
doi: 10.1016/j.jmst.2019.05.015
44
Yu Z L, Xu Z Z, Guo Y T, et al. Analysis of microstructure, mechanical properties, wear characteristics and corrosion behavior of SLM-NiTi under different process parameters [J]. J. Manuf. Process., 2022, 75: 637
doi: 10.1016/j.jmapro.2022.01.010
45
Lu H Z, Liu L H, Yang C, et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101: 205
doi: 10.1016/j.jmst.2021.06.019
46
Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing [J]. Mater. Sci. Eng., 2019, A763: 138166
47
Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting [J]. Acta Mater., 2021, 219: 117261
doi: 10.1016/j.actamat.2021.117261
48
Khanlari K, Shi Q, Li K F, et al. Effects of printing volumetric energy densities and post-processing treatments on the microstructural properties, phase transformation temperatures and hardness of near-equiatomic NiTinol parts fabricated by a laser powder bed fusion technique [J]. Intermetallics, 2021, 131: 107088
doi: 10.1016/j.intermet.2021.107088
49
Yang Y, Zhan J B, Sun Z Z, et al. Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy [J]. J. Alloys Compd., 2019, 804: 220
doi: 10.1016/j.jallcom.2019.06.340
50
Yang Y, Zhan J B, Sui J B, et al. Functionally graded NiTi alloy with exceptional strain-hardening effect fabricated by SLM method [J]. Scr. Mater., 2020, 188: 130
doi: 10.1016/j.scriptamat.2020.07.019
51
Ehsan Saghaian S, Nematollahi M, Toker G, et al. Effect of hatch spacing and laser power on microstructure, texture, and thermomechanical properties of laser powder bed fusion (L-PBF) additively manufactured NiTi [J]. Opt. Laser Technol., 2022, 149: 107680
doi: 10.1016/j.optlastec.2021.107680
52
Gu D D, Ma C L. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites [J]. Appl. Surf. Sci., 2018, 441: 862
doi: 10.1016/j.apsusc.2018.01.317
53
Guo W Q, Sun Z, Yang Y, et al. Study on the junction zone of NiTi shape memory alloy produced by selective laser melting via a stripe scanning strategy [J]. Intermetallics, 2020, 126: 106947
doi: 10.1016/j.intermet.2020.106947
54
Safdel A, Elbestawi M A. New insights on the laser powder bed fusion processing of a NiTi alloy and the role of dynamic restoration mechanisms [J]. J. Alloys Compd., 2021, 885: 160971
doi: 10.1016/j.jallcom.2021.160971
55
Yu Z L, Xu Z Z, Guo Y T, et al. Study on properties of SLM-NiTi shape memory alloy under the same energy density [J]. J. Mater. Res. Technol., 2021, 13: 241
doi: 10.1016/j.jmrt.2021.04.058
56
Yu Z L, Xu Z Z, Liu R Y, et al. Prediction of SLM-NiTi transition temperatures based on improved Levenberg-Marquardt algorithm [J]. J. Mater. Res. Technol., 2021, 15: 3349
doi: 10.1016/j.jmrt.2021.09.149
57
Ye D, Li S F, Misra R D K, et al. Ni-loss compensation and thermomechanical property recovery of 3D printed NiTi alloys by pre-coating Ni on NiTi powder [J]. Addit. Manuf., 2021, 47: 102344
58
Oliveira J P, Cavaleiro A J, Schell N, et al. Effects of laser processing on the transformation characteristics of NiTi: A contribute to additive manufacturing [J]. Scr. Mater., 2018, 152: 122
doi: 10.1016/j.scriptamat.2018.04.024
59
Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion [J]. Addit. Manuf., 2016, 12: 178
60
Speirs M, Wang X, Van Baelen S, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM [J]. Shape Mem. Superelast., 2016, 2: 310
61
Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi [J]. Acta Mater., 2018, 144: 552
doi: 10.1016/j.actamat.2017.10.072
62
Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment [J]. Sci. Rep., 2019, 9: 41
doi: 10.1038/s41598-018-36641-4
pmid: 30631084
63
Lu H Z, Ma H W, Luo X, et al. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting [J]. J. Mater. Res. Technol., 2021, 15: 6797
doi: 10.1016/j.jmrt.2021.11.112
64
Taheri Andani M, Haberland C, Walker J M, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2661
doi: 10.1177/1045389X16641199
65
Gan J, Duan L C, Li F, et al. Effect of laser energy density on the evolution of Ni4Ti3 precipitate and property of NiTi shape memory alloys prepared by selective laser melting [J]. J. Alloys Compd., 2021, 869: 159338
doi: 10.1016/j.jallcom.2021.159338
66
Yang Y, Wu Z G, Shen B Y, et al. Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy [J]. J. Mater. Process. Technol., 2021, 296: 117177
doi: 10.1016/j.jmatprotec.2021.117177
67
Yi X Y, Shen G J, Meng X L, et al. The higher compressive strength (TiB + La2O3)/Ti-Ni shape memory alloy composite with the larger recoverable strain [J]. Compos. Commun., 2021, 23: 100583
doi: 10.1016/j.coco.2020.100583
68
Farvizi M, Akbarpour M R, Ahn D H, et al. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles [J]. J. Alloys Compd., 2016, 688: 803
doi: 10.1016/j.jallcom.2016.06.299
69
Zhou Q, Hayat M D, Chen G, et al. Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties [J]. Mater. Sci. Eng., 2019, A744: 290
70
Ren Q H, Chen C Y, Lu Z J, et al. Effect of a constant laser energy density on the evolution of microstructure and mechanical properties of NiTi shape memory alloy fabricated by laser powder bed fusion [J]. Opt. Laser Technol., 2022, 152: 108182
doi: 10.1016/j.optlastec.2022.108182
71
Gustmann T, Gutmann F, Wenz F, et al. Properties of a superelastic NiTi shape memory alloy using laser powder bed fusion and adaptive scanning strategies [J]. Prog. Addit. Manuf., 2020, 5: 11
doi: 10.1007/s40964-020-00118-6
72
McCue I D, Valentino G M, Trigg D B, et al. Controlled shape-morphing metallic components for deployable structures [J]. Mater. Des., 2021, 208: 109935
doi: 10.1016/j.matdes.2021.109935
73
Lv J R, Shen H Y, Fu J Z. Fabrication of multi-functional Ni-Ti alloys by laser powder bed fusion [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 357
doi: 10.1007/s00170-021-08039-6
74
Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy [J]. Materialia, 2019, 6: 100305
doi: 10.1016/j.mtla.2019.100305
75
Shayesteh Moghaddam N, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting [J]. Mater. Sci. Eng., 2018, A724: 220
76
Jiang F, Liu Y N, Yang H, et al. Effect of ageing treatment on the deformation behaviour of Ti-50.9at.%Ni [J]. Acta Mater., 2009, 57: 4773
doi: 10.1016/j.actamat.2009.06.059
77
Miyazaki S, Kohiyama Y, Otsuka K, et al. Effects of several factors on the ductility of the Ti-Ni alloy [J]. Mater. Sci. Forum., 1991, 56-58: 765
doi: 10.4028/www.scientific.net/MSF.56-58.765
78
Pushin V G, Valiev R Z, Zhu Y T, et al. Effect of severe plastic deformation on the behavior of Ti-Ni shape memory alloys [J]. Mater. Trans., 2006, 47: 694
doi: 10.2320/matertrans.47.694
79
Saedi S, Turabi A S, Andani M T, et al. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys [J]. Mater. Sci. Eng., 2017, A686: 1
80
Sam J, Franco B, Ma J, et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys [J]. Scr. Mater., 2018, 146: 164
doi: 10.1016/j.scriptamat.2017.11.013
81
Ahadi A, Sun Q P. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi [J]. Acta Mater., 2014, 76: 186
doi: 10.1016/j.actamat.2014.05.007
82
Biffi C A, Fiocchi J, Valenza F, et al. Selective laser melting of Ni-Ti shape memory alloy: Processability, microstructure, and superelasticity [J]. Shape Mem. Superelast., 2020, 6: 342
83
Saedi S, Turabi A S, Andani M T, et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting [J]. Smart Mater. Struct., 2016, 25: 035005
84
Walker J M, Haberland C, Taheri Andani M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2653
doi: 10.1177/1045389X16635848
85
Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy [J]. Mater. Sci. Eng., 2016, A650: 225
86
Miyazaki S. My experience with Ti-Ni-based and Ti-based shape memory alloys [J]. Shape Mem. Superelast., 2017, 3: 279
87
Zhang L C, Chen L Y. A review on biomedical titanium Alloys: Recent progress and prospect [J]. Adv. Eng. Mater., 2019, 21: 1801215
doi: 10.1002/adem.201801215
88
Rho J Y, Ashman R B, Turner C H. Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements [J]. J. Biomech., 1993, 26: 111
pmid: 8429054
89
Khanlari K, Shi Q, Yan X C, et al. Printing of NiTinol parts with characteristics respecting the general microstructural, compositional and mechanical requirements of bone replacement implants [J]. Mater. Sci. Eng., 2022, A839: 142839
90
Yang Q, Sun K H, Yang C, et al. Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 858: 157674
doi: 10.1016/j.jallcom.2020.157674
91
Chen T, Cai W S, Liu Z, et al. In-situ dual-deoxidation design of advanced titanium matrix composites by pressureless sintering [J]. Composites, 2022, 244B: 110202