Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (1): 107-116    DOI: 10.11900/0412.1961.2022.00298
Research paper Current Issue | Archive | Adv Search |
Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys
ZHENG Xiong1, LAI Yuxiang2(), XIANG Xuemei1, CHEN Jianghua2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 Pico Electron Microscopy Center, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou 570228, China
Cite this article: 

ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys. Acta Metall Sin, 2024, 60(1): 107-116.

Download:  HTML  PDF(4100KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 6xxx series aluminum alloys Al-Mg-Si(-Cu) are widely used in the automotive industry owing to their high strength-to-weight ratio, good formability, and corrosion resistance. Micro-alloying is an effective technique for enhancing the properties and microstructure of Al alloys. The effects of varying La additions on the microstructure and properties of Al-0.75Mg-0.75Si (mass fraction, %) alloy have been investigated using hardness, electrical conductivity, and tensile tests, as well as SEM and TEM. As the La content increases, the following observations are made: (1) the ductility and electrical conductivity of the alloy gradually increase due to the increase in the fraction of the AlSiLa secondary phases induced by the La addition and the amount of Si solute atoms consumed by these phases; (2) the strength of the alloy first increases due to the increase in the secondary-phase strengthening contribution of the AlSiLa phases and the grain refinement contribution, and then decreases owing to the decrease in the solid-solution strengthening contribution; and (3) the types of precipitates formed during aging gradually change; besides the β″ phase, polycrystalline β″ precipitates are also precipitated in the peak-aged alloys with La addition, while β″/U2, β′/U2, and β′/U2/β″ composite precipitates are precipitated in the over-aging condition of the La-added alloys.

Key words:  Al-Mg-Si alloy      micro-alloying      secondary phase      precipitate      mechanical property      electron microscopy     
Received:  16 June 2022     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China(52001119);National Natural Science Foundation of China(51831004);National Natural Science Foundation of China(52171006)
Corresponding Authors:  LAI Yuxiang, associate professor, Tel: (0898)66275138, E-mail: yxlai123@hainanu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00298     OR     https://www.ams.org.cn/EN/Y2024/V60/I1/107

AlloyMgSiLaAl
0La0.730.76-Bal.
0.2La0.690.710.22Bal.
0.4La0.720.690.42Bal.
0.6La0.770.710.64Bal.
Table 1  Chemical compositions of the four alloys used in the experiment
Fig.1  Variations of hardness (a) and electrical conduc-tivity (b) of the four alloys aging at 180oC (AQ—as-quenched, PA—peak-aging)
Fig.2  Engineering strain-stress curves of the four alloys under the AQ and PA conditions
AlloyYS / MPaUTS / MPaEl / %Q / MPa
AQPAAQPAAQPAAQPA
0La97.2312.2172.4332.021.64.7372.6432.8
0.2La98.4318.8172.5341.424.57.4378.7471.1
0.4La111.1337.3203.4355.826.09.1415.6499.7
0.6La100.7316.3191.9337.728.210.2409.6489.0
Table 2  Tensile properties of the four alloys under the AQ and PA conditions
Fig.3  Back-scattered electron (BSE) images (a-d) and EBSD inverse pole figures (IPFs) (e-h) of 0La (a, e), 0.2La (b, f), 0.4La (c, g), and 0.6La (d, h) alloys under the PA condition
Fig.4  XRD spectra of the four alloys under the PA condition (a), and BSE image of the 0.4La alloy (b) and EDS result of the particle marked with dot in Fig.4b (c) (Inset in Fig.4a shows the enlarged XRD spectra in the angular range 20°-30°)
Fig.5  Secondary electron (SE) images (a-d) and corresponding BSE images (e-h) of the tensile fracture morphologies of 0La (a, e), 0.2La (b, f), 0.4La (c, g), and 0.6La (d, h) alloys under the PA condition (Arrows show the cleavage planes, blue dashed circles show the dimples, orange dashed circles show the secondary phases)
Fig.6  Typical TEM bright field images (a, c, e, g) and precipitate length distributions (b, d, f, h) of 0La (a, b), 0.2La (c, d), 0.4La (e, f), and 0.6La (g, h) alloys under the PA condition
Fig.7  Schematics of the unit cell of β", β', and U2 (a), and HAADF-STEM images of 0La (b, f) and 0.4La alloys (c-e, g-i) peak-aged (b-e) and 96 h-aged (f-i) at 180oC (Cyan circle, orange and red hexagons depict the sub-unit(s) of β", β', and U2, respectively; z—fractional coordinate of atoms along precipitates' longest dimension; LDC—low density cylinder; a, b, c—lattice parameters)
Fig.8  Atomic-resolution HAADF-STEM image (a) and the corresponding EDS analyses (b-f) of the β″/U2 composite precipitate
Fig.9  DSC curves of the four alloys under the AQ condition
1 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
2 Pantelakis S G, Alexopoulos N D. Assessment of the ability of conventional and advanced wrought aluminum alloys for mechanical performance in light-weight applications [J]. Mater. Des., 2008, 29: 80
doi: 10.1016/j.matdes.2006.12.004
3 Zandbergen H W, Andersen S J, Jansen J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies [J]. Science, 1997, 277: 1221
doi: 10.1126/science.277.5330.1221
4 Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys [J]. Acta Mater., 1999, 47: 1537
doi: 10.1016/S1359-6454(99)00033-6
5 Chen J H, Costan E, van Huis M A, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys [J]. Science, 2006, 312: 416
pmid: 16627740
6 Vissers R, van Huis M A, Jansen J, et al. The crystal structure of the β' phase in Al-Mg-Si alloys [J]. Acta Mater., 2007, 55: 3815
doi: 10.1016/j.actamat.2007.02.032
7 Chen H N, Lu J B, Kong Y, et al. Atomic scale investigation of the crystal structure and interfaces of the B' precipitate in Al-Mg-Si alloys [J]. Acta Mater., 2020, 185: 193
doi: 10.1016/j.actamat.2019.11.059
8 Andersen S J, Marioara C D, Vissers R, et al. The structural relation between precipitates in Al-Mg-Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2 [J]. Mater. Sci. Eng., 2007, A444: 157
9 Andersen S J, Marioara C D, Frøseth A, et al. Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al-Mg-Si alloy system and its relation to the β' and β" phases [J]. Mater. Sci. Eng., 2005, A390: 127
10 Lai Y X, Jiang B C, Liu C H, et al. Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys [J]. J. Alloys Compd., 2017, 701: 94
doi: 10.1016/j.jallcom.2017.01.095
11 Lai Y X, Fan W, Yin M J, et al. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys [J]. J. Mater. Sci. Technol., 2020, 41: 127
doi: 10.1016/j.jmst.2019.11.001
12 Hirth S M, Marshall G J, Court S A, et al. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016 [J]. Mater. Sci. Eng., 2001, A319-321: 452
13 Jin M, Li J, Shao G J. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy [J]. J. Alloys Compd., 2007, 437: 146
doi: 10.1016/j.jallcom.2006.07.113
14 Xiao Q, Liu H Q, Yi D Q, et al. Effect of Cu content on precipitation and age-hardening behavior in Al-Mg-Si-xCu alloys [J]. J. Alloys Compd., 2017, 695: 1005
doi: 10.1016/j.jallcom.2016.10.221
15 Saito T, Wenner S, Osmundsen E, et al. The effect of Zn on precipitation in Al-Mg-Si alloys [J]. Philos. Mag., 2014, 94: 2410
doi: 10.1080/14786435.2014.913819
16 Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β" phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 78: 245
doi: 10.1016/j.actamat.2014.06.055
17 Jiao N N, Lai Y X, Chen S L, et al. Atomic-scale roles of Zn element in age-hardened AlMgSiZn alloys [J]. J. Mater. Sci. Technol., 2021, 70: 105
doi: 10.1016/j.jmst.2020.09.009
18 Mørtsell E A, Marioara C D, Andersen S J, et al. Effects of germanium, copper, and silver substitutions on hardness and microstructure in lean Al-Mg-Si alloys [J]. Metall. Mater. Trans., 2015, 46A: 4369
19 Mørtsell E A, Andersen S J, Friis J, et al. Atomistic details of precipitates in lean Al-Mg-Si alloys with trace additions of Ag and Ge studied by HAADF-STEM and DFT [J]. Philos. Mag., 2017, 97: 851
doi: 10.1080/14786435.2017.1281461
20 Mørtsell E A, Marioara C D, Andersen S J, et al. The effects and behaviour of Li and Cu alloying agents in lean Al-Mg-Si alloys [J]. J. Alloys Compd., 2017, 699: 235
doi: 10.1016/j.jallcom.2016.12.273
21 Liu Y, Lai Y X, Chen Z Q, et al. Formation of β"-related composite precipitates in relation to enhanced thermal stability of Sc-alloyed Al-Mg-Si alloys [J]. J. Alloys Compd., 2021, 885: 160942
doi: 10.1016/j.jallcom.2021.160942
22 Xiang X M, Lai Y X, Liu C H, et al. Sn-induced modification of the precipitation pathways upon high-temperature ageing in an Al-Mg-Si alloy [J]. Acta Metall. Sin., 2018, 54: 1273
doi: 10.11900/0412.1961.2018.00125
向雪梅, 赖玉香, 刘春辉 等. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变 [J]. 金属学报, 2018, 54: 1273
doi: 10.11900/0412.1961.2018.00125
23 Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy [J]. Mater. Sci. Eng., 2009, A516: 42
24 Yao D M, Xia Y M, Qiu F, et al. Effects of La addition on the elevated temperature properties of the casting Al-Cu alloy [J]. Mater. Sci. Eng., 2011, A528: 1463
25 Zheng Q J, Zhang L L, Jiang H X, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47: 142
doi: 10.1016/j.jmst.2019.12.021
26 Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
27 Chang C H, Lee S L, Hsu T Y, et al. Impact of Cu/Mg ratio on thermal stability of hot extrusion of Al-4.6 pct Cu-Mg-Ag alloys [J]. Metall. Mater. Trans., 2007, 38A: 2832
28 Wang T M, Zhao Y F, Chen Z N, et al. The bimodal effect of La on the microstructures and mechanical properties of in-situ A356-TiB2 composites [J]. Mater. Des., 2015, 85: 724
doi: 10.1016/j.matdes.2015.07.031
29 Jiang H X, Li S X, Zheng Q J, et al. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al-Fe alloys [J]. Mater. Des., 2020, 195: 108991
doi: 10.1016/j.matdes.2020.108991
30 Sankaran K K, O'neal J E, Sastry S M L. Effects of second-phase dispersoids on deformation behavior of Al-Li alloys [J]. Metall. Trans., 1983, 14A: 2174
31 Liu G, Zhang G J, Ding X D, et al. The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys [J]. Metall. Mater. Trans., 2004, 35A: 1725
32 Liu G, Zhang G J, Wang R H, et al. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys [J]. Acta Mater., 2007, 55: 273
doi: 10.1016/j.actamat.2006.08.026
33 Nellist P D, Pennycook S J. The principles and interpretation of annular dark-field Z-contrast imaging [J]. Adv. Imaging Electron Phys., 2000, 113: 147
34 Yang W C, Wang M P, Zhang R R, et al. The diffraction patterns from β" precipitates in 12 orientations in Al-Mg-Si alloy [J]. Scr. Mater., 2010, 62: 705
doi: 10.1016/j.scriptamat.2010.01.039
35 Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys [J]. Acta Mater., 2015, 98: 355
doi: 10.1016/j.actamat.2015.07.039
36 Pande C S, Cooper K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials [J]. Prog. Mater. Sci., 2009, 54: 689
doi: 10.1016/j.pmatsci.2009.03.008
37 Zhou S H, Napolitano R E. Phase equilibria and thermodynamic limits for partitionless crystallization in the Al-La binary system [J]. Acta Mater., 2006, 54: 831
doi: 10.1016/j.actamat.2005.10.013
38 Chang C S T, Banhart J. Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2011, 42A: 1960
39 Mahidhara R K. Effect of grain size on the superplastic behavior of a 7475 aluminum alloy [J]. J. Mater. Eng. Perform., 1995, 4: 674
doi: 10.1007/BF02646443
40 Hirata T, Oguri T, Hagino H, et al. Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy [J]. Mater. Sci. Eng., 2007, A456: 344
[1] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[2] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!