Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (1): 117-128    DOI: 10.11900/0412.1961.2022.00387
Research paper Current Issue | Archive | Adv Search |
Effects of Interlayer Materials Fe and Nb on Interfacial Shear Strength of Hot Extruded High-Strength Titanium-Steel Composite Pipe
CHENG Lei(), ZHANG Xuhang, HAN Ying, CHENG Zhicheng, YU Wei
Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

CHENG Lei, ZHANG Xuhang, HAN Ying, CHENG Zhicheng, YU Wei. Effects of Interlayer Materials Fe and Nb on Interfacial Shear Strength of Hot Extruded High-Strength Titanium-Steel Composite Pipe. Acta Metall Sin, 2024, 60(1): 117-128.

Download:  HTML  PDF(4788KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The production of metallic composites is an effective way to combine the advantages of different metals. Specifically, the combination of titanium and CrMo steel in a composite pipe can yield good corrosion resistance and excellent abrasion performance, rendering it highly promising for use in the petroleum industry. However, the interfacial reactions between the two metals during the manufacturing process can lead to the precipitation of brittle carbides or intermetallic compounds, resulting in substantial weakening of the combining strength. This is particularly problematic for the TC11 titanium and CrMo steel matrix due to their higher alloy content. Thus, to improve the bonding properties of titanium-steel composites, an interlayer is added between the matrixes. In this study, the effects of interlayer materials (Fe and Nb), extruding temperatures (920 and 970oC), and heat treatment on the bonding strength of high-strength CrMo steel and TC11 titanium matrixes were investigated. The results revealed that for the titanium-steel composite pipe, the bonding strength of the Fe-titanium interface dominates the shear stress (185 MPa) due to the locking effects of unevenly deformed grains. However, after heat treatment, M23C6 heavily precipitates in the Fe interlayer causing it to become hard and brittle, weakening the locking effects, and resulting in a significant decrease in shear stress (70 MPa). Conversely, the Nb-interlayer samples extruded at 920oC mainly cracked along the steel-Nb interface, while those extruded at 970oC mainly cracked along the Nb-titanium interface. Thus, the two interfaces respectively dominated the shear stress of the two Nb-interlayer samples, and this feature persisted after heat treatment. Moreover, the different cracking routes were found to be caused by the formation of a new NbC layer and a β-titanium layer, respectively. As the fractured NbC layer recovered during the heat treatment, the shear stress of the 920oC extruded sample increased to 170 MPa and that of the 970oC extruded sample decreased due to the solution of Ti0.86Al0.11Nb0.03 particles and the discontinuous β-titanium layer induced by it. Thus, the comparative study of interlayer materials and different processing parameters on the interfacial shear stress can effectively improve the production of hot-extruded high-strength titanium-steel pipe.

Key words:  titanium-steel composite pipe      hot extrusion      interlayer      shear property      precipitation     
Received:  15 August 2022     
ZTFLH:  TG379  
Fund: National Natural Science Foundation of China(52201059);China Postdoctoral Science Foundation(2019TQ0028)
Corresponding Authors:  CHENG Lei, Tel: (010)62332598, E-mail: chenglei@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00387     OR     https://www.ams.org.cn/EN/Y2024/V60/I1/117

Fig1  Schematics of the extrusion billet (a), tensile shear and compressive shear samples (b) and hardness testing method (c), and cross section and length features of the extruded compound pipe (d)
Fig.2  Interfacial characteristics (a) and related phase distribution features (c) of the 920oC extruded sample with a Fe interlayer (Fe-920oC), and interfacial characteristics (b) and EDS mappings (d) of the 970oC extruded sample with a Fe interlayer (Fe-970oC)
Fig.3  Linear distributions of alloying elements (a, b, d, e) and interfacial microstructures (c, f) of samples with a Fe interlayer
(a) Fe-920oC (b, c) Fe-920oC-H (H means the sample with heat treatment, the same below)
(d) Fe-970oC (e, f) Fe-970oC-H
Fig.4  Interfacial characteristics of the 920oC extruded sample (Nb-920oC) (a) and 970oC extruded sample (Nb-970oC) (b) with a Nb interlayer, EDS mappings corresponding to Fig.4a (c), and the enlarged views of rectangle regions marked in Figs.4a and b (d1-d3)
Fig.5  Linear distributions of alloying elements (a, b, d, e) and interfacial microstructures (c, f) of samples with a Nb interlayer
(a) Nb-920oC (b, c) Nb-920oC-H (d) Nb-970oC (e, f) Nb-970oC-H
InterlayerT / oCShear stress 1 / MPaFracture interfaceShear stress 2 / MPaShear stress 3 / MPaFracture interface
Fe920185Fe-TC117075Fe-TC11
970163Fe-TC117389Fe-TC11
Nb920131Steel-Nb170140Steel-Nb
970135Nb-TC119868Nb-TC11
Table 1  Shear stresses of different bonding interfaces and corresponding fracture features
Fig.6  Hardness distributions of Fe-970oC and Fe-970oC-H (a), Nb-920oC and Nb-920oC-H (b), Nb-920oC and Nb-970oC (c), and β-Ti layer in Nb-920oC-H (d)
Fig.7  Isothermal sections (1000oC) of typical ternary phase diagrams (The marked numbers and symbols indicate the EDS indexed compositions of the five compounds formed in the interface of sample Fe-920oC in Fig.2c; the content of each element in the figures is the atomic fraction, %)
(a) C-Cr-Fe (b) C-Ti-Fe (c) C-Ti-Al
(d) Fe-Ti-Nb (The shaded green region presents the infinite solid solution relationship between Nb and β-titanium)
Fig.8  Microstructures of Fe-920oC (a) and Fe-970oC (b) samples, and microstructure of Fe-970oC-H (c) and corresponding precipitation state (d) (Arrows with green, blue, and red colors indicate the β-Ti grains, the original steel-Fe interface, and the newly formed zigzag interface after the hot extrusion process, respectively)
Fig.9  Shear fractures of Fe-920oC (a), Fe-970oC (b), Nb-920oC (c), Nb-920oC-H (d), Nb-970oC (e), and Nb-970oC-H (f)
Fig.10  Schematics of interfacial microstructures of Fe-920oC (a), Fe-970oC (b), Fe-970oC-H (c), Nb-920oC (d), Nb-970oC (e), and Nb-920oC-H (f) samples (Red arrows indicate the interface reliefs caused by the inhomogeneous deformation of grains)
1 Guo X W, Wu Z J, Li N, et al. Research progress and prospects of rolling titanium/steel laminates [J]. China Metall., 2021, 31(3): 1
郭雄伟, 武张静, 李 宁 等. 钛/钢层合板轧制复合研究进展与展望 [J]. 中国冶金, 2021, 31(3): 1
2 Bai Y L, Liu X F, Wang W J, et al. Current status and research trends in processing and application of titanium/steel composite plate [J]. Chin. J. Eng., 2021, 43: 85
白于良, 刘雪峰, 王文静 等. 钛/钢复合板及其制备应用研究现状与发展趋势 [J]. 工程科学学报, 2021, 43: 85
3 Yang X, Shi C G, Ge Y H, et al. Three kinds of manufacturing technologies of titanium-steel composite plate for pressure vessel [J]. Pressure Vessel Technol., 2016, 33(12): 64
杨 旋, 史长根, 葛雨珩 等. 压力容器用钛-钢复合板的三种制造工艺 [J]. 制造与安装, 2016, 33(12): 64
4 Li H Y, Deng N J, Ge W, et al. Production technology of titanium & steel cladding tubes [A]. The 4th National Heat Exchanger Academic Conference [C]. Hefei: Hefei University of Technology Publishing House, 2011: 254
李弘缘, 邓宁嘉, 葛 伟 等. 钛/钢复合管生产工艺介绍 [A]. 全国第四届换热器学术会议论文集 [C]. 合肥: 合肥工业大学出版社, 2011: 254
5 Cai J W. Study on the titanium/steel bimetallic tube diffusion bonded under inner pressure [D]. Dalian: Dalian Jiaotong University, 2012
蔡建伟. 钛/钢双金属管内压扩散复合的研究 [D]. 大连: 大连交通大学, 2012
6 Guan H, Zhu H F, Kong F T, et al. Hot deformation behavior of extruded Ti-46Al-(V, Cr, Ni) alloy [J]. Forg. Stamp. Technol., 2019, 44(7): 158
关 红, 朱海峰, 孔凡涛 等. 挤压态Ti-46Al-(V, Cr, Ni)合金的高温变形行为 [J]. 锻压技术, 2019, 44(7): 158
7 Li P, Li C, Dong H G, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer [J]. J. Alloys Compd., 2022, 909: 164698
doi: 10.1016/j.jallcom.2022.164698
8 Chai X Y. Study on rolling process, microstructure and properties of titanium clad steel for ship and ocean engineering [D]. Beijing: Tsinghua University, 2018
柴希阳. 船舶与海洋工程用钛/钢复合板轧制工艺与组织性能研究 [D]. 北京: 清华大学, 2018
9 An T B, You H Y, Li D, et al. Microstructure and property of fusion weld seam of TA2/Q235 composite plate with Nb/Cu double transition layers [J]. Hot Work. Technol., 2019, 48(9): 18
安同邦, 由恒源, 李 弟 等. TA2/Q235复合板Nb/Cu双过渡层熔焊焊缝组织性能 [J]. 热加工工艺, 2019, 48(9): 18
10 Zhang Y Y, Wei J S, Qi Y C, et al. Microstructure and property of fusion welding butt joints of TA2/Q235 composite plate with Ni alloy transition layers [J]. Trans. China Weld. Inst., 2019, 40(1): 75
张亚运, 魏金山, 齐彦昌 等. TA2/Q235复合板用Ni基过渡层熔焊接头组织和性能 [J]. 焊接学报, 2019, 40(1): 75
11 Liu J G. Research on preparative technique of titanium-based laminated metal composites [D]. Beijing: University of Science and Technology Beijing, 2020
刘嘉庚. 钛系层压金属复合材料制备技术研究 [D]. 北京: 北京科技大学, 2020
12 Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer [J]. Mater. Sci. Eng., 2017, A695: 120
13 Ma Y, Rong Y, Wang J Z. Research on transition layers for the rolling Ti-steel composite plates [J]. Titanium Ind. Prog., 2010, 27(2): 24
马 英, 容 耀, 王敬忠. 轧制钛/钢复合板过渡层的研究 [J]. 钛工业进展, 2010, 27(2): 24
14 Peng L. Effect of heating temperature on microstructure and mechanical properties of Q235/Ti composites plates with Ni interlayer [J]. Iron Steel Vanadium Titanium, 2020, 41(2): 128
彭 琳. 加热温度对镍中间层热轧钛钢复合板微观组织及力学性能的影响 [J]. 钢铁钒钛, 2020, 41(2): 128
15 Yang D H, Luo Z A, Xie G M, et al. Interfacial microstructure and properties of a vacuum roll-cladding titanium-steel clad plate with a nickel interlayer [J]. Mater. Sci. Eng., 2019, A753: 49
16 Ha J S, Hong S I. Design of high strength Cu alloy interlayer for mechanical bonding Ti to steel and characterization of their tri-layered clad [J]. Mater. Des., 2013, 51: 293
doi: 10.1016/j.matdes.2013.04.068
17 Li B X, Chen Z J, He W J, et al. Effect of interlayer material and rolling temperature on microstructures and mechanical properties of titanium/steel clad plates [J]. Mater. Sci. Eng., 2019, A749: 241
18 Yu X. Diffusion bonding between steel/titanium with copper interlayer [D]. Dalian: Dalian Jiaotong University, 2009
于 昕. 铜过渡层钢/钛扩散复合研究 [D]. 大连: 大连交通大学, 2009
19 Hu C D, Dong H, Zhao H S, et al. Bore damage characteristics of a machine gun barrel [J]. Acta Armament., 2019, 40: 480
胡春东, 董 瀚, 赵洪山 等. 某机枪枪管內膛损伤特征 [J]. 兵工学报, 2019, 40: 480
doi: 10.3969/j.issn.1000-1093.2019.03.005
20 Yang H B, Wang H, Yao P W, et al. Effects of annealing time on microstructure and properties of TA2/Q235 explosive composite plate [J]. Ordnance Mater. Sci. Eng., 2020, 43(6): 46
杨洪波, 王 豪, 姚沛文 等. 退火时间对TA2/Q235爆炸复合板组织性能的影响 [J]. 兵器材料科学与工程, 2020, 43(6): 46
21 Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
doi: 10.1016/j.matchar.2013.11.016
22 Jang J H, Heo Y U, Lee C H, et al. Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel [J]. Mater. Sci. Technol., 2013, 29: 309
doi: 10.1179/1743284712Y.0000000131
23 Hin C, Bréchet Y, Maugis P, et al. Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron [J]. Acta Mater., 2008, 56: 5535
doi: 10.1016/j.actamat.2008.07.044
24 Zhang Z W, Liu C T, Miller M K, et al. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys [J]. Sci. Rep., 2013, 3: 1327
doi: 10.1038/srep01327 pmid: 23429646
25 Chen C Y, Chen C C, Yang J R. Dualism of precipitation morphology in high strength low alloy steel [J]. Mater. Sci. Eng., 2015, A626: 74
26 Yeli G, Auger M A, Wilford K, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties [J]. Acta Mater., 2017, 125: 38
doi: 10.1016/j.actamat.2016.11.052
27 Lejček P. Grain Boundary Segregation in Metals [M]. Berlin, Heidelberg: Springer, 2010: 159
28 Huang Z. Interface structure and interface failure behavior of TA2/stainless steel/Q235 composite plate [D]. Chongqing: Chongqing University, 2021
黄 钊. TA2/不锈钢/Q235复合板的界面结构及失效行为 [D]. 重庆: 重庆大学, 2021
29 Hosford W F. Mechanical Behavior of Materials [M]. Cambridge: Cambridge University Press, 2005: 129
30 Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture [J]. Acta Mater., 2016, 107: 424
doi: 10.1016/j.actamat.2015.12.034
[1] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[7] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[8] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[9] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[10] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[12] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[13] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[14] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[15] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
No Suggested Reading articles found!