|
|
Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys |
YANG Junjie, ZHANG Changsheng( ), LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai |
Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621999, China |
|
Cite this article:
YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys. Acta Metall Sin, 2024, 60(1): 30-42.
|
Abstract GH4169 superalloys are used in gas turbine engines and power plants owing to their excellent mechanical properties and corrosion resistance at temperatures exceeding 600oC. Because of their service condition, involving high temperature and complex stress, much attention has been attracted to the effect of temperature and loading mode on the mechanical properties and deformation mechanism. The effect of the loading mode, especially the multiaxial or coupled loading, on the mechanism of plastic deformation is still an outstanding open question despite numerous investigations on the effect of temperature on mechanical properties. In this study, the effect of tension-torsion coupled loading on deformation behavior was investigated, where the microstructures and underlying mechanism were revealed using SEM, TEM, EBSD, and neutron diffraction. It is found that the mechanical properties are dependent on the tension-torsion loading. For the tension specimens, the yield and ultimate strengths increase with the pretorsion angle; for instance, at the pretorsion angle of 720°, the increase rate is approximately 150% and 13%, respectively. At the pretension strain of 20%, the yield strength and elongation increase by approximately 31% and 16%, respectively. The density of dislocations increases in those samples after tensile and torsional deformations compared to the undeformed samples. Moreover, the density of dislocations for specimens deformed under the coupled loading is lower than those deformed under axial loading, indicating the dislocation annihilation effect. The yield strength is enhanced due to the strengthening effect of the initial dislocations produced during the preloading. The ultimate strength for the torsional specimens after pretension decreases because of the dislocation annihilation effect during the subsequent coupled loading. However, for the tensile specimens after pretorsion, such dislocation annihilation effect can be counteracted to some extent by the strengthening effect of the formed gradient structure by pretorsion on mechanical strength. These findings provide some insight into the regulation of the microdeformation mechanism process of materials through designing the coupled or multiaxial loading modes and the coordinated improvement of strength and toughness based on the achievement of gradient or hierarchical microstructure.
|
Received: 27 March 2022
|
|
Fund: National Science and Technology Major Project(2019-VII-0019-0161);National Natural Science Foundation of China(U1930121) |
Corresponding Authors:
ZHANG Changsheng, associate professor, Tel: (0816)2495141, E-mail: johmzhangc@caep.cn
|
1 |
Cui C Y, Zhang R, Zhou Y Z, et al. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51: 16
doi: 10.1016/j.jmst.2020.03.023
|
2 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
|
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
3 |
Wagner J N, Hofmann M, van Petegem S, et al. Comparison of intergranular strain formation of conventional and newly developed nickel based superalloys [J]. Mater. Sci. Eng., 2016, A662: 303
|
4 |
Ma S, Seetharaman V, Majumdar B S. CRSS of γ /γ ′ phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900℃ [J]. Acta Mater., 2008, 56: 4102
doi: 10.1016/j.actamat.2008.04.057
|
5 |
Daymond M R, Preuss M, Clausen B. Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements [J]. Acta Mater., 2007, 55: 3089
doi: 10.1016/j.actamat.2007.01.013
|
6 |
Wang X G, Han G M, Cui C Y, et al. On the γ ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 84
doi: 10.1016/j.jmst.2018.09.014
|
7 |
Sun J Y, Yuan H. Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718 [J]. Int. J. Fatigue, 2019, 120: 228
doi: 10.1016/j.ijfatigue.2018.11.018
|
8 |
Böcker M, Babu H R, Henkel S, et al. Planar-biaxial low-cycle fatigue behavior of the nickel-base alloy Inconel 718 at elevated temperatures under selected loading conditions [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 1571
doi: 10.1111/ffe.v45.6
|
9 |
Ince A, Glinka G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings [J]. Int. J. Fatigue, 2014, 62: 34
doi: 10.1016/j.ijfatigue.2013.10.007
|
10 |
le Graverend J B, Pettinari-Sturmel F, Cormier J, et al. Mechanical twinning in Ni-based single crystal superalloys during multiaxial creep at 1050℃ [J]. Mater. Sci. Eng., 2018, A722: 76
|
11 |
Lu X, Dunne F P E, Xu Y L. A crystal plasticity investigation of slip system interaction, GND density and stored energy in non-proportional fatigue in nickel-based superalloy [J]. Int. J. Fatigue, 2020, 139: 105782
doi: 10.1016/j.ijfatigue.2020.105782
|
12 |
Wang J J, Guo W G, Guo J, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy [J]. J. Mater. Eng. Perform., 2016, 25: 2043
doi: 10.1007/s11665-016-2049-9
|
13 |
Aliha M R M, Kalantari M H, Ghoreishi S M N, et al. Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints [J]. Theor. Appl. Fract. Mech., 2019, 103: 102243
doi: 10.1016/j.tafmec.2019.102243
|
14 |
Kale C, Rajagopalan M, Turnage S, et al. On the roles of stress-triaxiality and strain-rate on the deformation behavior of AZ31 magnesium alloys [J]. Mater. Res. Lett., 2018, 6: 152
doi: 10.1080/21663831.2017.1417923
|
15 |
Ekambaram R, Thamburaja P, Yang H, et al. The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures [J]. Int. J. Solids Struct., 2010, 47: 678
doi: 10.1016/j.ijsolstr.2009.11.008
|
16 |
Nicholson D E, Padula S A II, Benafan O, et al. Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi [J]. Adv. Mater., 2021, 33: 2005092
doi: 10.1002/adma.v33.5
|
17 |
Yang C, Liu H M, Yang B C, et al. The effect of pre-twinning on the mechanical behavior of free-end torsion for an extruded AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2018, A743: 391
|
18 |
Polatidis E, Šmíd M, Hsu W N, et al. The interplay between deformation mechanisms in austenitic 304 steel during uniaxial and equibiaxial loading [J]. Mater. Sci. Eng., 2019, A764: 138222
|
19 |
Shi Y D, Li B, Gao F, et al. An outstanding synergy of high strength and ductility in gradient structured low-carbon steel [J]. Materialia, 2019, 5: 100181
doi: 10.1016/j.mtla.2018.100181
|
20 |
Lei S, Shi Y D, Wang L N, et al. Enhancing the mechanical properties of low-carbon steel by a graded dislocation microstructure [J]. Mater. Sci. Technol., 2018, 34: 1854
doi: 10.1080/02670836.2018.1494529
|
21 |
Cheng Z L. Effect of torsion deformation on microstructure and mechanical properties of twin induced plasticity (TWIP) steel in Fe-Mn-Al-Si system [D]. Taiyuan: North University of China, 2021
|
|
程泽亮. 扭转变形对Fe-Mn-Al-Si系TWIP钢微观组织及力学性能的影响 [D]. 太原: 中北大学, 2021
|
22 |
Chen G, Li L T, Qiao J W, et al. Gradient hierarchical grain structures of Al0.1CoCrFeNi high-entropy alloys through dynamic torsion [J]. Mater. Lett., 2019, 238: 163
doi: 10.1016/j.matlet.2018.11.176
|
23 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
24 |
Ding J, Zhang M H, Liang Y F, et al. Enhanced high-temperature tensile property by gradient twin structure of duplex high-Nb-containing TiAl alloy [J]. Acta Mater., 2018, 161: 1
doi: 10.1016/j.actamat.2018.09.007
|
25 |
Gravell J D, Ryu I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars [J]. Acta Mater., 2020, 190: 58
doi: 10.1016/j.actamat.2020.02.030
|
26 |
Dowling M E, translated by Jiang S Y, Zhang Y Q. Mechanical Behavior of Materials—Engineering Methods for Deformation, Fracture, and Fatigue [M]. Beijing: China Machine Press, 2016: 108
|
|
Dowling M E著, 江树勇, 张艳秋 译. 工程材料力学行为——变形、断裂与疲劳的工程方法 [M]. 北京: 机械工业出版社, 2016: 108
|
27 |
Xie L, Chen X P, Fang L M, et al. Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR [J]. Nucl. Instrum. Meth. Phys. Res., 2019, 915A: 31
|
28 |
Toby B H, Von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package [J]. J. Appl. Cryst., 2013, 46: 544
doi: 10.1107/S0021889813003531
|
29 |
Li J, Wang H, Sun G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J]. Nucl. Instrum. Methods Phys. Res., 2015, 783A: 76
|
30 |
Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
doi: 10.1063/1.117951
|
31 |
Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
doi: 10.1107/S0021889899009334
|
32 |
Zhao X B, Ling G P, Qian G D. Properties of Materials [M]. Beijing: Higher Education Press, 2006: 190
|
|
赵新兵, 凌国平, 钱国栋. 材料的性能 [M]. 北京: 高等教育出版社, 2006: 190
|
33 |
Zhang J D, Huang Z Y, Rui W L, et al. Effect of combined torsion and tension on the microstructure and fracture behavior of 316L austenitic stainless steel [J]. J. Mater. Eng. Perform., 2019, 28: 5691
doi: 10.1007/s11665-019-04316-4
|
34 |
Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on torsion properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. Mater. Sci. Eng., 2017, A682: 202
|
35 |
Wildemann V E, Lomakin E V, Tretyakov M P. Postcritical deformation of steels in plane stress state [J]. Mech. Solids, 2014, 49: 18
doi: 10.3103/S0025654414010038
|
36 |
Li Y Z, Huang M X. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
|
|
李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
|
37 |
Prasad K, Obana M, Ito A, et al. Synchrotron diffraction characterization of dislocation density in additively manufactured in 718 superalloy [J]. Mater. Charact., 2021, 179: 111379
doi: 10.1016/j.matchar.2021.111379
|
38 |
Zhao Y Y, Cao H B, Liu S J. The dislocation-based fatigue deformation mechanism of a RAFM steel under multi-axial loadings [J]. J. Nucl. Mater., 2022, 558: 153324
doi: 10.1016/j.jnucmat.2021.153324
|
39 |
Wang C P, Li F G, Fan J K, et al. The effect of reverse strain on microstructure and strengthening of copper fabricated by severe plastic deformation of torsion process [J]. Mater. Sci., 2018, 24: 271
doi: 10.1007/BF00660966
|
40 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 194
|
|
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第3版. 上海: 上海交通大学出版社, 2010: 194
|
41 |
Sun S J, Tian Y Z, Zhang Z F. Strengthening and toughening mechanisms of precipitation-hardened Fe53Mn15Ni15Cr10Al4Ti2C1 high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 54
|
|
孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金强韧化机制 [J]. 金属学报, 2022, 58: 54
doi: 10.11900/0412.1961.2021.00242
|
42 |
Fan H D, Wang Q Y, El-Awady J A, et al. Strain rate dependency of dislocation plasticity [J]. Nat. Commun., 2021, 12: 1845
doi: 10.1038/s41467-021-21939-1
pmid: 33758183
|
43 |
Birosca S, Liu G, Ding R G, et al. The dislocation behaviour and GND development in a nickel based superalloy during creep [J]. Int. J. Plast., 2019, 118: 252
doi: 10.1016/j.ijplas.2019.02.015
|
44 |
Jiang J, Britton T B, Wilkinson A J. Evolution of dislocation density distributions in copper during tensile deformation [J]. Acta Mater., 2013, 61: 7227
doi: 10.1016/j.actamat.2013.08.027
|
45 |
Yin W H, Wang W G. Relationship between dislocation structure characteristics at triple junction and grain orientation in high pure copper [J]. Mater. Charact., 2021, 178: 111265
doi: 10.1016/j.matchar.2021.111265
|
46 |
Jiang F L, Takaki S, Masumura T, et al. Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling [J]. Int. J. Plast., 2020, 129: 102700
doi: 10.1016/j.ijplas.2020.102700
|
47 |
Malashenko V V. Dependence of dynamic yield stress of binary alloys on the dislocation density under high-energy impacts [J]. Phys. Solid State, 2020, 62: 1886
doi: 10.1134/S1063783420100200
|
48 |
Zhu C Y, Harrington T, Gray G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
doi: 10.1016/j.actamat.2018.05.022
|
49 |
Zhang J W. High pressure torsion deformation and strengthening models of aluminum alloys [D]. Dalian: Dalian University of Technology, 2011
|
|
张久文. 铝合金高压扭转变形及其强化模型 [D]. 大连: 大连理工大学, 2011
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|