Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (1): 30-42    DOI: 10.11900/0412.1961.2022.00142
Research paper Current Issue | Archive | Adv Search |
Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys
YANG Junjie, ZHANG Changsheng(), LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai
Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621999, China
Cite this article: 

YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys. Acta Metall Sin, 2024, 60(1): 30-42.

Download:  HTML  PDF(4304KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH4169 superalloys are used in gas turbine engines and power plants owing to their excellent mechanical properties and corrosion resistance at temperatures exceeding 600oC. Because of their service condition, involving high temperature and complex stress, much attention has been attracted to the effect of temperature and loading mode on the mechanical properties and deformation mechanism. The effect of the loading mode, especially the multiaxial or coupled loading, on the mechanism of plastic deformation is still an outstanding open question despite numerous investigations on the effect of temperature on mechanical properties. In this study, the effect of tension-torsion coupled loading on deformation behavior was investigated, where the microstructures and underlying mechanism were revealed using SEM, TEM, EBSD, and neutron diffraction. It is found that the mechanical properties are dependent on the tension-torsion loading. For the tension specimens, the yield and ultimate strengths increase with the pretorsion angle; for instance, at the pretorsion angle of 720°, the increase rate is approximately 150% and 13%, respectively. At the pretension strain of 20%, the yield strength and elongation increase by approximately 31% and 16%, respectively. The density of dislocations increases in those samples after tensile and torsional deformations compared to the undeformed samples. Moreover, the density of dislocations for specimens deformed under the coupled loading is lower than those deformed under axial loading, indicating the dislocation annihilation effect. The yield strength is enhanced due to the strengthening effect of the initial dislocations produced during the preloading. The ultimate strength for the torsional specimens after pretension decreases because of the dislocation annihilation effect during the subsequent coupled loading. However, for the tensile specimens after pretorsion, such dislocation annihilation effect can be counteracted to some extent by the strengthening effect of the formed gradient structure by pretorsion on mechanical strength. These findings provide some insight into the regulation of the microdeformation mechanism process of materials through designing the coupled or multiaxial loading modes and the coordinated improvement of strength and toughness based on the achievement of gradient or hierarchical microstructure.

Key words:  polycrystalline nickel-based superalloy      coupled loading      mechanical property      deformation mechanism      neutron diffraction     
Received:  27 March 2022     
ZTFLH:  TG132.32  
Fund: National Science and Technology Major Project(2019-VII-0019-0161);National Natural Science Foundation of China(U1930121)
Corresponding Authors:  ZHANG Changsheng, associate professor, Tel: (0816)2495141, E-mail: johmzhangc@caep.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00142     OR     https://www.ams.org.cn/EN/Y2024/V60/I1/30

Fig.1  Schematic of the samples for mechanical property measurements (unit: mm)
Fig.2  Equivalent stress-strain curves (a, c) and mechanical properties (b, d) for PRTOR (a, b) and PRTEN (c, d) specimens (PRTOR and PRTEN are the shortened name for pre-torsion and pre-tension, respectively)
Fig.3  Strain hardening rate curves of PRTOR (a) and PRTEN (b) specimens (Insets show the corres-ponding enlargement for the range of relatively low strains as marked by the squares)
Fig.4  Photographs of PRTOR (a) and PRTEN (b) specimens after fracture (Insets show the measured angle ψ between the fracture plane and transverse cross section)
Fig.5  Low magnification SEM images (a, d, g, j) for specimens after fracture, and the corresponding high magnification images for the center (b, e, h, k) and edge (c, f, i, l) areas that are marked by open squares in low magnification images for PRTOR-0 (a-c), PRTOR-360 (d-f), PRTEN-0 (g-i), and PRTEN-20 (j-l) specimens
Fig.6  Schematic of the fracture of specimens under tension-torsion loading (a) and the force analysis at one point in the lateral surface (σ and τ represent the tensile and shear stresses on the fracture plane, respectively; σy and σz denote the normal stresses perpendicular to XZ and XY planes, respectively; τzy and τyz represent the shear stresses within XY and XZ planes, respectively) (b)
Fig.7  Neutron diffraction patterns (a) as well as the partial enlargement of square area in Fig.7a (b) for the undeformed specimen and those deformed PRTOR and PRTEN specimens under different loading modes
SpecimenLattice parameter / nmDislocation density / (1014 m-2)
Undeformed0.359770.5 ± 0.2
PRTOR-00.359725.9 ± 0.9
PRTOR-3600.359844.6 ± 0.4
PRTEN-00.3598710.8 ± 0.7
PRTEN-200.359958.2 ± 0.8
Table 1  Lattice parameters and dislocation densities for the undeformed specimen and those deformed PRTOR and PRTEN specimens under different loading modes
Fig.8  Linear fitting curves of (ΔK)2 and K2C for undeformed (a), PRTOR-0 (b), PRTOR-360 (c), PRTEN-0 (d), and PRTEN-20 (e) specimens (K, ΔK, and C denote the length of reciprocal lattice vector, peak broadening, and average contrast factor, respectively)
Fig.9  Development of the reflection (200) during torsion process at the pre-tension loading
Fig.10  TEM images for PRTOR-0 (a) and PRTOR-360 (b) specimens
Fig.11  Grain boundary maps (a, b) and misorientation distribution profiles (c, d) of center (a, c) and edge (b, d) areas for PRTOR-360 specimens (Insets in Figs.11a and b show schematically the positions of sampling point or testing area. The red and black lines represent the low angle (< 15°) grain boundaries (LAGBs) and high angle (> 15°) grain boundaries (HAGBs), respectively)
Fig.12  Schmid factor maps of center (a) and edge (b) areas for PRTOR-360 specimen
Fig.13  Schematics of microscopic deformation mecha-nism under pre-torsion (φ—torsion angle) (a) and pre-tension (ε—strain) (b) modes
1 Cui C Y, Zhang R, Zhou Y Z, et al. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51: 16
doi: 10.1016/j.jmst.2020.03.023
2 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
3 Wagner J N, Hofmann M, van Petegem S, et al. Comparison of intergranular strain formation of conventional and newly developed nickel based superalloys [J]. Mater. Sci. Eng., 2016, A662: 303
4 Ma S, Seetharaman V, Majumdar B S. CRSS of γ /γ ′ phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900℃ [J]. Acta Mater., 2008, 56: 4102
doi: 10.1016/j.actamat.2008.04.057
5 Daymond M R, Preuss M, Clausen B. Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements [J]. Acta Mater., 2007, 55: 3089
doi: 10.1016/j.actamat.2007.01.013
6 Wang X G, Han G M, Cui C Y, et al. On the γ ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 84
doi: 10.1016/j.jmst.2018.09.014
7 Sun J Y, Yuan H. Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718 [J]. Int. J. Fatigue, 2019, 120: 228
doi: 10.1016/j.ijfatigue.2018.11.018
8 Böcker M, Babu H R, Henkel S, et al. Planar-biaxial low-cycle fatigue behavior of the nickel-base alloy Inconel 718 at elevated temperatures under selected loading conditions [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 1571
doi: 10.1111/ffe.v45.6
9 Ince A, Glinka G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings [J]. Int. J. Fatigue, 2014, 62: 34
doi: 10.1016/j.ijfatigue.2013.10.007
10 le Graverend J B, Pettinari-Sturmel F, Cormier J, et al. Mechanical twinning in Ni-based single crystal superalloys during multiaxial creep at 1050℃ [J]. Mater. Sci. Eng., 2018, A722: 76
11 Lu X, Dunne F P E, Xu Y L. A crystal plasticity investigation of slip system interaction, GND density and stored energy in non-proportional fatigue in nickel-based superalloy [J]. Int. J. Fatigue, 2020, 139: 105782
doi: 10.1016/j.ijfatigue.2020.105782
12 Wang J J, Guo W G, Guo J, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy [J]. J. Mater. Eng. Perform., 2016, 25: 2043
doi: 10.1007/s11665-016-2049-9
13 Aliha M R M, Kalantari M H, Ghoreishi S M N, et al. Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints [J]. Theor. Appl. Fract. Mech., 2019, 103: 102243
doi: 10.1016/j.tafmec.2019.102243
14 Kale C, Rajagopalan M, Turnage S, et al. On the roles of stress-triaxiality and strain-rate on the deformation behavior of AZ31 magnesium alloys [J]. Mater. Res. Lett., 2018, 6: 152
doi: 10.1080/21663831.2017.1417923
15 Ekambaram R, Thamburaja P, Yang H, et al. The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures [J]. Int. J. Solids Struct., 2010, 47: 678
doi: 10.1016/j.ijsolstr.2009.11.008
16 Nicholson D E, Padula S A II, Benafan O, et al. Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi [J]. Adv. Mater., 2021, 33: 2005092
doi: 10.1002/adma.v33.5
17 Yang C, Liu H M, Yang B C, et al. The effect of pre-twinning on the mechanical behavior of free-end torsion for an extruded AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2018, A743: 391
18 Polatidis E, Šmíd M, Hsu W N, et al. The interplay between deformation mechanisms in austenitic 304 steel during uniaxial and equibiaxial loading [J]. Mater. Sci. Eng., 2019, A764: 138222
19 Shi Y D, Li B, Gao F, et al. An outstanding synergy of high strength and ductility in gradient structured low-carbon steel [J]. Materialia, 2019, 5: 100181
doi: 10.1016/j.mtla.2018.100181
20 Lei S, Shi Y D, Wang L N, et al. Enhancing the mechanical properties of low-carbon steel by a graded dislocation microstructure [J]. Mater. Sci. Technol., 2018, 34: 1854
doi: 10.1080/02670836.2018.1494529
21 Cheng Z L. Effect of torsion deformation on microstructure and mechanical properties of twin induced plasticity (TWIP) steel in Fe-Mn-Al-Si system [D]. Taiyuan: North University of China, 2021
程泽亮. 扭转变形对Fe-Mn-Al-Si系TWIP钢微观组织及力学性能的影响 [D]. 太原: 中北大学, 2021
22 Chen G, Li L T, Qiao J W, et al. Gradient hierarchical grain structures of Al0.1CoCrFeNi high-entropy alloys through dynamic torsion [J]. Mater. Lett., 2019, 238: 163
doi: 10.1016/j.matlet.2018.11.176
23 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
24 Ding J, Zhang M H, Liang Y F, et al. Enhanced high-temperature tensile property by gradient twin structure of duplex high-Nb-containing TiAl alloy [J]. Acta Mater., 2018, 161: 1
doi: 10.1016/j.actamat.2018.09.007
25 Gravell J D, Ryu I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars [J]. Acta Mater., 2020, 190: 58
doi: 10.1016/j.actamat.2020.02.030
26 Dowling M E, translated by Jiang S Y, Zhang Y Q. Mechanical Behavior of Materials—Engineering Methods for Deformation, Fracture, and Fatigue [M]. Beijing: China Machine Press, 2016: 108
Dowling M E著, 江树勇, 张艳秋 译. 工程材料力学行为——变形、断裂与疲劳的工程方法 [M]. 北京: 机械工业出版社, 2016: 108
27 Xie L, Chen X P, Fang L M, et al. Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR [J]. Nucl. Instrum. Meth. Phys. Res., 2019, 915A: 31
28 Toby B H, Von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package [J]. J. Appl. Cryst., 2013, 46: 544
doi: 10.1107/S0021889813003531
29 Li J, Wang H, Sun G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J]. Nucl. Instrum. Methods Phys. Res., 2015, 783A: 76
30 Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
doi: 10.1063/1.117951
31 Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
doi: 10.1107/S0021889899009334
32 Zhao X B, Ling G P, Qian G D. Properties of Materials [M]. Beijing: Higher Education Press, 2006: 190
赵新兵, 凌国平, 钱国栋. 材料的性能 [M]. 北京: 高等教育出版社, 2006: 190
33 Zhang J D, Huang Z Y, Rui W L, et al. Effect of combined torsion and tension on the microstructure and fracture behavior of 316L austenitic stainless steel [J]. J. Mater. Eng. Perform., 2019, 28: 5691
doi: 10.1007/s11665-019-04316-4
34 Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on torsion properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. Mater. Sci. Eng., 2017, A682: 202
35 Wildemann V E, Lomakin E V, Tretyakov M P. Postcritical deformation of steels in plane stress state [J]. Mech. Solids, 2014, 49: 18
doi: 10.3103/S0025654414010038
36 Li Y Z, Huang M X. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
37 Prasad K, Obana M, Ito A, et al. Synchrotron diffraction characterization of dislocation density in additively manufactured in 718 superalloy [J]. Mater. Charact., 2021, 179: 111379
doi: 10.1016/j.matchar.2021.111379
38 Zhao Y Y, Cao H B, Liu S J. The dislocation-based fatigue deformation mechanism of a RAFM steel under multi-axial loadings [J]. J. Nucl. Mater., 2022, 558: 153324
doi: 10.1016/j.jnucmat.2021.153324
39 Wang C P, Li F G, Fan J K, et al. The effect of reverse strain on microstructure and strengthening of copper fabricated by severe plastic deformation of torsion process [J]. Mater. Sci., 2018, 24: 271
doi: 10.1007/BF00660966
40 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 194
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第3版. 上海: 上海交通大学出版社, 2010: 194
41 Sun S J, Tian Y Z, Zhang Z F. Strengthening and toughening mechanisms of precipitation-hardened Fe53Mn15Ni15Cr10Al4Ti2C1 high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 54
孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金强韧化机制 [J]. 金属学报, 2022, 58: 54
doi: 10.11900/0412.1961.2021.00242
42 Fan H D, Wang Q Y, El-Awady J A, et al. Strain rate dependency of dislocation plasticity [J]. Nat. Commun., 2021, 12: 1845
doi: 10.1038/s41467-021-21939-1 pmid: 33758183
43 Birosca S, Liu G, Ding R G, et al. The dislocation behaviour and GND development in a nickel based superalloy during creep [J]. Int. J. Plast., 2019, 118: 252
doi: 10.1016/j.ijplas.2019.02.015
44 Jiang J, Britton T B, Wilkinson A J. Evolution of dislocation density distributions in copper during tensile deformation [J]. Acta Mater., 2013, 61: 7227
doi: 10.1016/j.actamat.2013.08.027
45 Yin W H, Wang W G. Relationship between dislocation structure characteristics at triple junction and grain orientation in high pure copper [J]. Mater. Charact., 2021, 178: 111265
doi: 10.1016/j.matchar.2021.111265
46 Jiang F L, Takaki S, Masumura T, et al. Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling [J]. Int. J. Plast., 2020, 129: 102700
doi: 10.1016/j.ijplas.2020.102700
47 Malashenko V V. Dependence of dynamic yield stress of binary alloys on the dislocation density under high-energy impacts [J]. Phys. Solid State, 2020, 62: 1886
doi: 10.1134/S1063783420100200
48 Zhu C Y, Harrington T, Gray G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
doi: 10.1016/j.actamat.2018.05.022
49 Zhang J W. High pressure torsion deformation and strengthening models of aluminum alloys [D]. Dalian: Dalian University of Technology, 2011
张久文. 铝合金高压扭转变形及其强化模型 [D]. 大连: 大连理工大学, 2011
[1] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[2] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!