Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (9): 1159-1168    DOI: 10.11900/0412.1961.2021.00551
Research paper Current Issue | Archive | Adv Search |
Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy
HAN Linzhi1, MU Juan1(), ZHOU Yongkang2, ZHU Zhengwang2, ZHANG Haifeng2
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy. Acta Metall Sin, 2022, 58(9): 1159-1168.

Download:  HTML  PDF(3779KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Refractory high-entropy alloys (RHEAs) have great application potential in extreme conditions due to their outstanding high-temperature properties. However, several issues, such as high density, poor room temperature plasticity, and high cost limit their practical application. A new Ti0.5Zr1.5NbTa0.5Sn0.2 (molar ratio) RHEA with a medium density of approximately 8.0 g/cm3 was prepared to address the aforementioned issues; the effects of heat treatment temperature on the alloy's microstructure and mechanical properties were systematically examined. The findings indicate that as-cast Ti0.5Zr1.5NbTa0.5Sn0.2 RHEA contains Zr-rich and Ta-rich bcc phases and lath-like Zr5Sn3 intermetallics in the crystal. The volume fraction of the Ta-rich bcc phase gradually decreases with the increase in heat treatment temperature, and Zr5Sn3 intermetallic first increases and then decreases. The sample presents a near single-phase bcc structure when the heat treatment temperature is 1400oC. A series of samples have good compressive plastic deformation ability under quasi-static conditions, and the alloy's yield strength increased gradually with an increasing heat treatment temperature. The sample's yield strength quenched at 1400oC is as high as 1749 MPa. The alloy showed strain rate strengthening effect under dynamic loading, and the yield strength significantly increased. The sample's yield strength quenched at 1400oC reaches 2750 MPa; however, the plastic deformation ability is reduced. The reason why the strength increases with the heat treatment temperature is that the 9.8% average atomic size difference results in a significant solid solution strengthening effect.

Key words:  refractory high-entropy alloy      heat treatment      mechanical property      solid solution strengthening     
Received:  13 December 2021     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(51771049);National Natural Science Foundation of China(51790484);National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(JCKYS20-20602005)
About author:  MU Juan, associate professor, Tel: (024)83691568, E-mail: muj@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00551     OR     https://www.ams.org.cn/EN/Y2022/V58/I9/1159

Fig.1  XRD spectra of Ti0.5Zr1.5NbTa0.5Sn0.2 high-entropy alloy (HEA) with different states (a) and enlarged spectra (b)
Fig.2  Lattice constants of bcc phases in the Ti0.5Zr1.5NbTa0.5Sn0.2 HEA with different states
Fig.3  BSE (a-e) and TEM (f) images of Ti0.5Zr1.5NbTa0.5Sn0.2 HEA with different states (Inset shows the SAED pattern)
(a) as-cast (b) 800oC, quenching (c) 1000oC, quenching (d) 1200oC, quenching (e, f) 1400oC, quenching
Fig.4  EDS mapping results of components in the Ti0.5Zr1.5NbTa0.5Sn0.2 HEA with different states
(a) as-cast (b) 800oC, quenching (c) 1000oC, quenching (d) 1200oC, quenching (e) 1400oC, quenching
StateRegionAtomic fraction / %
TiZrNbTaSn
As-castNominal14.543.324.211.86.2
bcc115.550.819.87.66.3
bcc213.025.835.623.42.1
800oCLath13.645.522.19.99.0
bcc116.153.318.96.45.3
bcc213.726.334.923.81.9
1000oCLath15.950.520.27.85.6
bcc116.551.820.27.85.6
bcc213.723.836.824.51.3
1200oCLath13.443.722.610.99.4
bcc115.346.423.410.14.8
bcc213.823.436.225.01.6
1400oCLath7.153.59.44.126.1
bcc114.543.324.311.76.3
bcc213.725.635.522.82.5
Table 1  EDS results of different positions in Ti0.5Zr1.5NbTa0.5Sn0.2 HEA with different states
Fig.5  Quasi-static compression properties of Ti0.5Zr1.5NbTa0.5Sn0.2 HEA
(a) stress-strain curves at 5 × 10-4 s-1 strain rate
(b) variation trend of yield strenghand microhardness with heat treatment temperature
Fig.6  Lateral morphologies of Ti0.5Zr1.5NbTa0.5Sn0.2 alloy with different states after quasi-static compression tests
(a) as-cast (b) 800oC, quenching
(c) 1000oC, quenching (d) 1200oC, quenching (e) 1400oC, quenching
Fig.7  Dynamic compressive properties of Ti0.5Zr1.5NbTa0.5Sn0.2 HEA
(a) stress-strain curves at 2.5 × 103 s-1 strain rate
(b) variation trend of yieldstrength with heat treatment temperature
Fig.8  Fracture morphologies of Ti0.5Zr1.5NbTa0.5Sn0.2 HEA at 2.5 × 103 s-1 strain rate
(a) side macro morphology of fracture sample (b) as-cast
(c) 800oC, quenching (d) 1000oC, quenching
(e) 1200oC, quenching (f) 1400oC, quenching
ElementTiZrNbTaSn
Ti-----
Zr0----
Nb24---
Ta130--
Sn-21-43-1-3-
Table 2  Mixing enthalpy (ΔHmix) of Ti, Zr, Nb, Ta, and Sn binary alloy[25]
1 Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf. Coat. Technol., 2004, 188-189: 193
doi: 10.1016/j.surfcoat.2004.08.023
2 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
4 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
5 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
6 Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy [J]. Acta Mater., 2014, 65: 85
doi: 10.1016/j.actamat.2013.11.049
7 Chen J, Zhou X Y, Wang W L, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloys Compd., 2018, 760: 15
doi: 10.1016/j.jallcom.2018.05.067
8 Chen G, Luo T, Shen S C, et al. Research progress in refractory high-entropy alloys [J]. Mater. Rep., 2021, 35: 17064
陈 刚, 罗 涛, 沈书成 等. 难熔高熵合金的研究进展 [J]. 材料导报, 2021, 35: 17064
9 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
doi: 10.1557/jmr.2018.153
10 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
11 Yang S F, Wen J N, Mo J, et al. Microstructure and strengthening mechanisms in FCC-structured single-phase TiC-CoCrFeCuNiAl0.3 HEACs with deformation twinning [J]. Mater. Sci. Eng., 2021, A814: 141215
12 Yang S F, Zhang Y, Yan X, et al. Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites [J]. Mater. Chem. Phys., 2018, 210: 240
doi: 10.1016/j.matchemphys.2017.11.037
13 An Z B, Mao S C, Liu Y N, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79: 109
doi: 10.1016/j.jmst.2020.10.073
14 Hu Y M, Liu X D, Guo N N, et al. Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys [J]. Rare Met, 2019, 38: 840
doi: 10.1007/s12598-019-01310-6
15 Hu M l, Song W D, Duan D B, et al. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures [J]. Int. J. Mech. Sci., 2020, 182: 105738
doi: 10.1016/j.ijmecsci.2020.105738
16 Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J]. Mater. Sci. Eng., 2016, A654: 30
17 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
doi: 10.1016/j.jallcom.2011.02.171
18 Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys Compd., 2015, 649: 1110
doi: 10.1016/j.jallcom.2015.07.209
19 Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy [J]. Mater. Des., 2019, 162: 256.
doi: 10.1016/j.matdes.2018.11.052
20 Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
doi: 10.1007/s11837-014-1066-0
21 Voyiadjis G Z, Abed F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency [J]. Mech. Mater., 2005, 37: 355
doi: 10.1016/j.mechmat.2004.02.003
22 Chen H H, Zhang X F, Liu C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explos. Shock Waves, 2021, 41: 041402
陈海华, 张先锋, 刘 闯 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41: 041402
23 Dirras G, Couque H, Lilensten L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Mater. Charact., 2016, 111: 106
doi: 10.1016/j.matchar.2015.11.018
24 Zhang Z R, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Mater. Des., 2017, 133: 435
doi: 10.1016/j.matdes.2017.08.022
25 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
26 Wu Y D, Si J J, Lin D Y, et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys [J]. Mater. Sci. Eng., 2018, A724: 249
27 Yu Q, Chen Y J, Fang Y. Heterogeneity in chemical distribution and its impact in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 393
余 倩, 陈雨洁, 方 研. 高熵合金中的元素分布规律及其作用 [J]. 金属学报, 2021, 57: 393
28 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534.
doi: 10.1002/adem.200700240
29 Wen C, Mo W W, Tian Y W, et al. Research progress on solid solution strengthening of high entropy alloys [J]. Mater. Rep., 2021, 35: 17081
文 成, 莫湾湾, 田玉琬 等. 高熵合金固溶强化问题的研究进展 [J]. 材料导报, 2021, 35: 17081
30 Yang Y, He Q F. Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!