Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (7): 1015-1024    DOI: 10.11900/0412.1961.2019.00400
Current Issue | Archive | Adv Search |
Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide
HE Shuwen1, WANG Minghua2, BAI Qin1(), XIA Shuang1, ZHOU Bangxin1
1. Institute of Materials, Shanghai University, Shanghai 200072, China
2. Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China
Cite this article: 

HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide. Acta Metall Sin, 2020, 56(7): 1015-1024.

Download:  HTML  PDF(2809KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

WC-Co cemented carbides, consisted of hard phase WC and ductile phase γ-phase, are usually prepared by a powder metallurgy and liquid phase sintering methodology. Due to the combined properties of high hardness and toughness, cemented carbides have high wear resistance and are widely used as machining, cutting, drilling, mining and forming tools. When the grain size of WC phase in WC-Co alloy is reduced to submicron, the hardness, toughness and strength of the material can be improved. TaC was considered as an effective additive of WC-Co based tools, for it made a great contribution to the enhancement of mechanical properties of WC-Co alloy. In this work, the effect of TaC on the microstructure and mechanical properties of WC-TiC-TaC-Co cemented carbide were investigated by means of SEM, EDS, three-point bending apparatus and hardness tester. The results show that WC-TiC-TaC-Co cemented carbide is mainly composed of three phases: WC phase, (W, Ti, Ta)C phase and γ phase. With the increase of TaC content from 4.6% (mass fraciton) to 7.3%, the proportion of WC grains with the size of less than 0.5 μm increases; the proportion of (W, Ti, Ta)C grains with the size of larger than 1 μm increases, and the (W, Ti, Ta)C grains begin to aggregate; the density of the alloy first decreases then increases and decreases, and the variation tendencies of hardness and fracture toughness are consistent with the density; the transverse rupture strength of the alloy first increases and then decreases. WC-TiC-TaC-Co cemented carbide with 6.3% TaC shows the best mechanical properties: the hardness, fracture toughness and transverse rupture strength are 1749 HV30, 10.2 MPa·m1/2and 2247 MPa, respectively.

Key words:  cemented carbide      grain size      mechanical property     
Received:  25 November 2019     
ZTFLH:  TG135  
Fund: National Natural Science Foundation of China(51671122);National Natural Science Foundation of China(51871144)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00400     OR     https://www.ams.org.cn/EN/Y2020/V56/I7/1015

SampleWCCoTa*Ti
S482.15.06.24.32.4
S579.45.46.75.23.3
S679.45.06.95.92.8
S777.56.36.66.82.8
Table 1  Compositions of WC-TiC-TaC-Co cemented carbides
Fig.1  Schematics of three-point bending device (top view; unit: mm)
(a) support base (b) force indenter
Fig.2  SEM-BSE images of WC-TiC-TaC-Co cemented carbides with different TaC contents
(a) S4 (b) S5 (c) S6 (d) S7
PositionWCCoTaTi
189.310.7---
232.311.1-38.817.8
343.2-56.8--
Table 2  EDS results in Fig.2a
Fig.3  Grain size distributions of WC (a) and (W, Ti, Ta)C (b) in WC-TiC-TaC-Co cemented carbides
Fig.4  Effect of TaC content on the density and hardness of WC-TiC-TaC-Co cemented carbides
Fig.5  Effect of TaC content on the fracture toughness of WC-TiC-TaC-Co cemented carbides
Fig.6  Crack propagation morphologies of WC-TiC-TaC-Co cemented carbides
(a) S4 (b) S5 (c) S6 (d) enlarged view of area A (e) S7 (f) enlarged view of area B
Fig.7  Orientation distributions of WC grain in WC-TiC-TaC-Co cemented carbides
(a) S4 (b) S5 (c) S6 (d) S7
Fig.8  Effect of TaC content on the transverse rupture strength of WC-TiC-TaC-Co cemented carbides
Fig.9  Fracture morphologies of WC-TiC-TaC-Co cemented carbides (CNR—crack nucleation region, CPR—crack propagation region, FFR—fast fracture region)
(a) S4 (b) S5 (c) S6 (d) S7
Fig.10  Fracture morphology enlargements of WC-TiC-TaC-Co cemented carbides
(a) S4 (b) S5 (c) S6 (d) S7
[1] Chen J, Deng X, Gong M F, et al. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer [J]. Appl. Surf. Sci., 2016, 380: 108
doi: 10.1016/j.apsusc.2016.02.040
[2] Östberg G, Buss K, Christensen M, et al. Mechanisms of plastic deformation of WC-Co and Ti(C, N)-WC-Co [J]. Int. J. Refract. Met. Hard Mater., 2006, 24: 135
[3] Gu L N, Huang J W, Tang Y F, et al. Influence of different post treatments on microstructure and properties of WC-Co cemented carbides [J]. J. Alloys Compd., 2015, 620: 116
[4] Liu S R, Zhou J T, Ma L. Effects of TaC, Cr3C2 on property and microstructure of WC-Co cemented carbides [J]. Cem. Carbide, 1997, 14: 22
(刘寿荣, 周金亭, 马 岚. TaC、Cr3C2对WC-Co硬质合金组织和性能的影响 [J]. 硬质合金, 1997, 14: 22)
[5] O'Quigley D G F, Luyckx S, James M N. New results on the relationship between hardness and fracture toughness of WC-Co hardmetal [J]. Mater. Sci. Eng., 1996, A209: 228
[6] Lee K H, Cha S I, Kim B K, et al. Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC-TiC-Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2006, 24: 109
[7] Su W, Sun Y X, Yang H L, et al. Effects of TaC on microstructure and mechanical properties of coarse grained WC-9Co cemented carbides [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1194
[8] Liu S R. Mechanism of the effects of TaC and Cr3C2 on property of WC-Co cemented carbides [J]. Rare Met. Mater. Eng., 1997, 26: 31
(刘寿荣. WC-Co硬质合金中TaC, Cr3C2添加剂的作用机理 [J]. 稀有金属材料与工程, 1997, 26: 31)
[9] Zhou W, Xiong J, Wan W C, et al. The effect of NbC on mechanical properties and fracture behavior of WC-10Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 72
[10] Morton C W, Wills D J, Stjernberg K. The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys [J]. Int. J. Refract. Met. Hard Mater., 2005, 23: 287
[11] Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Microstructural and mechanical characterization of high energy ball milled and sintered WC-10wt%Co-xTaC nano powders [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 801
[12] Huang S W, Xiong J, Guo Z X, et al. Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature [J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 134
[13] Farhat Z N. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel [J]. Mater. Charact., 2003, 51: 117
doi: 10.1016/j.matchar.2003.10.005
[14] Van d M R, Sacks N. Effect of TaC and TiC on the friction and dry sliding wear of WC-6wt.% Co cemented carbides against steel counterfaces [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 94
doi: 10.1016/j.ijrmhm.2013.02.009
[15] Wang L L, Li H Y, Liu N. Effect of TiC on microstructures and mechanical properties of WC-Co-based carbides [J]. Heat Treat., 2010, 25(3): 25
(王丽利, 李海艳, 刘 宁. 添加TiC对WC-Co基硬质合金组织和力学性能的影响 [J]. 热处理, 2010, 25(3): 25)
[16] Li T J, Xiong J, Guo Z X, et al. Research on microstructure and erosion resistance of WC-x%TiC-6%Co cemented carbide [J]. Cem. Carbide, 2017, 34: 129
(李体军, 熊 计, 郭智兴等. WC-x%TiC-6%Co硬质合金特征及冲刷磨损性能的研究 [J]. 硬质合金, 2017, 34: 129)
[17] Rolander U, Weinl G, Zwinkels M. Effect of Ta on structure and mechanical properties of (Ti, Ta, W)(C, N)-Co cermets [J]. Int. J. Refract. Met. Hard Mater., 2001, 19: 325
doi: 10.1016/S0263-4368(01)00042-7
[18] Xiao G T, Liu Y, Ye J W, et al. The influence of different content of (W, Ta)C composite carbide on microstructure and properties of WC-10Co cemented carbide [J]. Powder Metall. Technol., 2013, 31: 355
(肖广涛, 刘 颖, 叶金文等. (W, Ta)C复合碳化物含量对WC-10Co硬质合金显微结构和力学性能的影响 [J]. 粉末冶金技术, 2013, 31: 355)
[19] Liu M L, Huang X Y, Duan S T, et al. Diffraction contrast study on microstructure and deformation process of WC-Co cemented carbide [J]. Acta Metall. Sin., 1982, 18: 689
(刘曼朗, 黄孝瑛, 段石田, 等. WC-Co硬质合金的微观结构与形变过程的电子衍衬研究 [J]. 金属学报, 1982, 18: 689)
[20] Li C H, Yu L X, Xiong W H. Effect of WC particle size on WC-Co cemented carbides fracture toughness [J]. Cem. Carbide, 2001, 18: 138
(李晨辉, 余立新, 熊惟皓. WC的粒度对WC-Co硬质合金断裂韧性的影响 [J]. 硬质合金, 2001, 18: 138)
[21] Liu X M, Zhang J L, Hou C, et al. Mechanisms of WC plastic deformation in cemented carbide [J]. Mater. Des., 2018, 150: 154
doi: 10.1016/j.matdes.2018.04.025
[22] Sun J L, Zhao J, Li Z L, et al. Effects of initial particle size distribution and sintering parameters on microstructure and mechanical properties of functionally graded WC-TiC-VC-Cr3C2-Co hard alloys [J]. Ceram. Int., 2017, 43: 2686
doi: 10.1016/j.ceramint.2016.11.086
[23] Min S Y, Liao J, Shi K H, et al. Effects of carbon content and B class porosity on bending strength of WC-8%Co cemented carbide [J]. Cem. Carbide, 2013, 30: 24
(闵召宇, 廖 军, 时凯华等. 碳量及B类孔隙对WC-8%Co硬质合金抗弯强度的影响 [J]. 硬质合金, 2013, 30: 24)
[24] Weidow J, Andrén H O. Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions [J]. Int. J. Refract. Met. Hard Mater., 2011, 29: 38
doi: 10.1016/j.ijrmhm.2010.06.010
[25] Chang S H, Chen S L. Characterization and properties of sintered WC-Co and WC-Ni-Fe hard metal alloys [J]. J. Alloys Compd., 2014, 585: 407
doi: 10.1016/j.jallcom.2013.09.188
[26] Song S H, Li J C. Initiation of microcracks in WC-Co alloys [J]. Acta Metall. Sin., 1987, 23: 521
(宋士泓, 李健纯. WC-Co合金微裂纹形核过程的探讨 [J]. 金属学报, 1987, 23: 521)
[27] Akhtar F, Humail I S, Askari S J, et al. Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC-(W, Ti, Ta)C-6wt% Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2007, 25: 405
doi: 10.1016/j.ijrmhm.2006.11.005
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!