Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 642-652    DOI: 10.11900/0412.1961.2019.00395
Current Issue | Archive | Adv Search |
Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel
JIANG Yi1,CHENG Manlang2,JIANG Haihong1,ZHOU Qinglong1,JIANG Meixue1,JIANG Laizhu1(),JIANG Yiming2
1.Qing Tuo Group Co. , Ltd. , Ningde 355006, China
2.Department of Materials Science, Fudan University, Shanghai 200433, China
Download:  HTML  PDF(15314KB) 
Export:  BibTeX | EndNote (RIS)      

Nickel is a very important material, yet the resources are deficient. 08Cr19Ni10 (S30408) steel is expensive with containing 8% (mass fraction) nickel and has a low strength, while low nickel austenitic stainless steel has poor corrosion resistance property.In order to save nickel resources, the strength of austenitic stainless steel was improved by partly replacing Ni with Mn and N on the basis of ensuring that the corrosion is as well as S30408, 08Cr19Mn6Ni3Cu2N (QN1803) high strength nitrogen alloyed low nickel austenitic stainless steel was designed by Thermo-Calc software in place of S30408 steel. Microstructures, mechanical and corrosion resistant properties of QN1803 steel were investigated by means of OM, SEM, electrochemistry workstation and other methods. The results reveal the grain size of QN1803 steel is smaller than that of S30408, and difference of average grain size is increased from 1.8 μm to 16.27 μm with temperature rising from 1040 ℃ to 1120 ℃. Yield strength of QN1803 steel is increased to more than 400 MPa, and is 1.3 times than that of S30408 steel for nitrogen playing a role of grains refining and solution reinforcing. The impact energy of QN1803 steel is significantly lower than that of S30408 steel for nitrogen atoms reducing low temperature toughness of nitrogen alloyed austenitic stainless steel below -60 ℃. After 600~900 ℃ temperature ageing, chromium-rich carbideparticles first occur in grain boundaries, nose temperature of precipitation phase is 800 ℃; the inter-granular corrosion of QN1803 steel need more ageing time than S30408 steel, because nitrogen atoms can impede nucleation and growth of carbides, inter-granular corrosion of QN1803 steel is occured with double ageing time of S30408 steel at ageing temperature 700 ℃. Compared with S30408 steel, the passivation film depth of QN1803 steel has higher content of nitrogen and chromium; QN1803 steel has similar pitting corrosion rate (4.72 g/(m2·h)) and more stable austenitic microstructure and higher corrosion potential (327 mV); the pitting resistance of QN1803 steel is 1.15 times than that of S30408 steel with 60% cold reduction, and products have lower risk of stress cracking than S30408 steel. Due to addition of 1.65%Cu element improving corrosion resistance capability in dilute sulfuric acid solution, the surface of QN1803 steel can be enriched with a layer of copper-rich film protecting substrate, as a result, its corrosion resistance reaches 6.6 times than that of S30408 steel in 5% dilute sulfuric acid solution.

Key words:  low nickel austenitic stainless steel      high strength      stable austenite      mechanical property      corrosion resistant property     
Received:  19 November 2019     
ZTFLH:  TG142.1  
Fund: Major Science and Technology Research Project of Fujian Province(2017HZ0001-3)
Corresponding Authors:  Laizhu JIANG     E-mail:

Cite this article: 

JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel. Acta Metall Sin, 2020, 56(4): 642-652.

URL:     OR

08Cr19Mn6Ni3Cu2N (QN1803)0.0680.466.2018.
06Cr19Ni10 (S30408)0.0400.451.0218.
Table 1  Chemical compositions of 08Cr19Mn6Ni3Cu2N and 06Cr19Ni10 austenitic stainless steels
Fig.1  Phase diagrams of QN1803 (a) and S30408 (b) steels calculated by Thermo-Calc software
Fig.2  Positions of QN1803 and S30408 steels in Schaeffler-Delong diagram (A—austenite, F—ferrite, M—martensite, Creq—chromium equivalent, Nieq—nickel equivalent )
Fig.3  Effects of solution temperature on grain size of QN1803 and S30408 steels(a) grain size (b) difference of grain size between QN1803 steel and S30408 steel




Tensile strength


Yield strength




Yield ratio

Table 2  Mechanical properties of QN1803 and S30408 steels at room temperature
Fig.4  Effects of nitrogen content on yield strength and elongation of austenitic stainless steel
Fig.5  Comparisons of mechanical properties of QN1803 and S30408 steels at different temperatures(a) yield strength (b) tensile strength
Fig.6  Comparisons of impact energy of QN1803 and S30408 steels
Fig.7  Effects of cold deformation on magnetic phase content (a) and relative permeability (b)
Fig.8  Effects of ageing treatment on the microstructure of QN1803 steel
Fig.9  Precipitation curve of carbide in QN1803 steel
Fig.10  EPMA (a) and EDS analysis (b) of ageing precipitated phase in QN1803 steel heat treated at 900 ℃ for 5 h
TemperatureAgeing time / min
Table 3  Current ratio Ra (Ir/Ia) of QN1803 steel measured under different sensitization conditions
Fig.11  Comparisons of temperature-time-sensitization (TTS) curve between QN1803 and S30408 steels
Fig.12  Comparisons of pitting potentials of austenitic stainless steel with different pitting resistance equivalent numbers



potential / mV

Pitting potential


Corrosion rate / (g·m-2·h-1)
In 6%FeCl3+0.16%HClIn 5%H2SO4In 5%HCl
Table 4  Comparisons of corrosion resistant property between QN1803 and S30408 stainless steels
Fig.13  Distributions of the alloying elements in the surface of QN1803 (a) and S30408 (b) steels
Fig.14  Distributions of Cr (a) and N (b) elements in the surface of QN1803 and S30408 steels
Fig.15  Comparisons of polarization curves between QN1803 and S30408 steels
Fig.16  EPMA images of surface of QN1803 (a) and S30408 (b) steels corroded in 5%H2SO4 for 6 h
Fig.17  Macrostructures of deep drawing products with height 40 mm and diameter 50 mm immersed in 0.16%HCl+6%FeCl3 solution for 24 h
[1] Li Z, Gao Q, He B, et al. Microstructure and mechanical properties of 1Cr17Mn9Ni4N steel [J]. J. Iron Steel Res., 2005, 17(2): 68
[1] 李 志, 高 谦, 何 冰等. 节镍型奥氏体不锈钢1Cr17Mn9Ni4N的组织和力学性能 [J]. 钢铁研究学报, 2005, 17(2): 68
[2] Mukherjee M, Pal T K. Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels [J]. Acta Metall. Sin. (Engl. Lett., 2013, 26: 206
[3] Srikanth S, Saravanan P, Sisodia S, et al. Metallurgical investigation into the incidence of delayed catastrophic cracking in low nickel austenitic stainless steel coils [J]. J. Fail. Anal. Prev., 2014, 14: 220
[4] Monticelli C, Criado M, Fajardo S, et al. Corrosion behaviour of a low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar [J]. Cem. Concr. Res., 2014, 55: 49
[5] Shin J H, Lee J, Min D J, et al. Solubility of nitrogen in high manganese steel (HMNS) melts: Interaction parameter between Mn and N [J]. Metall. Mater. Trans., 2011, 42B: 1081
[6] Lu S Y. Introduction to Stainless Steel [M]. Beijing: Chemical Industry Press, 2013: 27
[6] 陆世英. 不锈钢概论 [M]. 北京: 化学工业出版社, 2013: 27
[7] Du D X, Fu R D, Li Y J, et al. Modification of the Hall-Patch equation for friction-stir-processing microstructures of high-nitrogen steel [J]. Mater. Sci. Eng, 2015, A640: 190
[8] Feichtinger H K, Stein G. Melting of high nitrogen steels [J]. Mater. Sci. Forum, 1999, 318-320: 261
[9] Xue R R, Song Z G, Zheng W J, et al. Effect of adding nitrogen on grain size and mechanical properties of 316L [J]. J. Iron Steel Res., 2013, 25(10): 36
[9] 薛忍让, 宋志刚, 郑文杰等. 氮对316L晶粒尺寸和力学性能的影响 [J]. 钢铁研究学报, 2013, 25(10): 36
[10] Deng Y H, Yang Y H, Cao J C, et al. Research on dynamic recrystallization behavior of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type duplex stainless steel [J]. Acta Metall. Sin., 2019, 55: 445
[10] 邓亚辉, 杨银辉, 曹建春等. 23Cr-2.2Ni-6.3Mn-0.26N节Ni型双相不锈钢动态再结晶行为研究 [J]. 金属学报, 2019, 55: 445
[11] Ma Y X. Research on microstructure and mechanism DBT of high nitrogenaustenitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2008
[11] 马玉喜. 高氮奥氏体不锈钢组织结构及韧脆转变机制的研究 [D]. 昆明: 昆明理工大学, 2008
[12] Kuniya J, Masaoka I, Sasaki R. Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water [J]. Corrosion, 1988, 44: 21
[13] Hua B D, Shen X S, Zhou D R, et al. On the distribution of chromium in the chromiumdepleted zone of a sensitized 18-8 stainless steels [J]. Acta Metall. Sin., 1965, 8: 98
[13] 华保定, 沈行素, 周德瑞等. 铬在18铬-8镍型不锈钢晶粒边界的贫铬层中的分布 [J]. 金属学报, 1965, 8: 98
[14] Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[15] Qin F M, Li Y J, Zhao X D, et al. Effect of nitrogen content on precipitation behavior and mechanical properties of Mn18Cr18N austenitic stainless steel [J]. Acta Metall. Sin., 2018, 54: 55
[15] 秦凤明, 李亚杰, 赵晓东等. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响 [J]. 金属学报, 2018, 54: 55
[16] Fang F, Li J Y, Wang Y D, et al. Microstructure and property of Cr18Mn6Ni4N nickel-saving austenite stainless steel [J]. J. Harbin Eng. Univ., 2015, (2): 276
[16] 房 菲, 李静媛, 王一德, 等. 节镍奥氏体不锈钢Cr18Mn6Ni4N的组织及性能 [J]. 哈尔滨工程大学学报, 2015, (2): 276
[17] Jargelius R F A, Hertzman S, Symniotis E, et al. Evaluation of the EPR technique for measuring sensitization in type 304 stainless steel [J]. Corrosion, 1991, 47: 429
[18] Fang Z, Zhang L, Wu Y S, et al. Thioacetamide as an activator for the potentiodynamic reactivation method in evaluating susceptibility of type 304L stainless steel to intergranular corrosion [J]. Corrosion, 1995, 51: 124
[19] Xie C Y, Huang Z D, Chen L L, et al. Influence of heat treatment process on the intergranular corrosion susceptibility of 304 stainless steel evaluated by electrochemical potentiodynamic reactivation method [J]. Phys. Test. Chem. Anal. Part A: Phys. Test., 2017, 53(5): 303
[19] 谢春玉, 黄子东, 陈丽玲等. 使用电化学动电位再活化法研究热处理工艺对304不锈钢晶间腐蚀敏感性的影响 [J]. 理化检验(物理分册), 2017, 53(5): 303
[20] Li X, Ni Y F, Jiang Y M, et al. Intergranular corrosion of low Cr ferritic stainless steel 429 evaluated by the optimized double loop electrochemical potentiokinetic reactivation test [J]. Adv. Mater. Sci. Eng., 2015, 2015: 716874
[21] Sun J K, Sun L, Dai N W, et al. Investigation on ultra-pure ferritic stainless steel 436L susceptibility to intergranular corrosion using optimised double loop electrochemical potentiokinetic reactivation method [J]. Corros. Eng. Sci. Technol., 2018, 53: 574
[22] Their H, Bbaumel E. Influence of N on the dispersiveness of austenitic stainless steel [J]. Arch. Eisenhuttenwesen, 1969, 40: 333
[23] Huang J H, Fu Y F. Pitting resistance equivalent (PRE) and super stainless steel for pressure vessels [J]. Press. Vessel Technol., 2013, 30(4): 41
[23] 黄嘉琥, 付逸芳. 耐点蚀当量(PRE)与压力容器用超级不锈钢 [J]. 压力容器, 2013, 30(4): 41
[24] Huang M, Zhang T K, Lu S Y. Effect and ITS mechanism of nitrogen on pitting corrosion of austenitic stainless steel [J]. J. Iron Steel Res., 1991(Suppl.): 19
[24] 黄 敏, 张廷凯, 陆世英. 氮对奥氏体不锈钢耐点蚀性能的影响及机理探讨 [J]. 钢铁研究学报, 1991(增刊): 19
[25] Chen Z Q. Recent development in high nitrogen stainless steel research [J]. Baosteel Technol., 2005, (5): 11
[25] 陈志强. 高氮不锈钢研究的发展近况 [J]. 宝钢技术, 2005, (5): 11
[26] Lu S Y. Super Stainless Steel and High Nickel Corrosion Resistant Alloy [M]. Beijing: Chemical Industry Press, 2012: 1
[26] 陆世英. 超级不锈钢和高镍耐蚀合金 [M]. 北京: 化学工业出版社, 2012: 1
[27] Wu J. Duplex Stainless Steel [M]. Beijing: Metallurgical Industry Press, 1999: 1
[27] 吴 玖. 双相不锈钢 [M]. 北京: 冶金工业出版社, 1999: 1
[28] Ishii K, Ishii T, Ota H. Ni-and Mo-free ferritic stainless steel with high corrosion resistance, JFE443CT [J]. JFE Technical Report, 2008, (12): 39
[29] Velasco F, Ruiz-Román J M, Torralba J M, et al. Corrosion resistance of alloyed powder metallurgy austenitic stainless steels in acid solutions [J]. Br. Corros. J., 1996, 31: 295
[30] Jing Y X, Zhang Y, Dai A L, et al. Effect of copper on corrosion resistance of Cr-Mn stainless steel [J]. Corros. Prot., 2009, 30: 713
[30] 金云学, 张 艳, 戴安伦等. 铜对铬锰不锈钢耐蚀性的影响 [J]. 腐蚀与防护, 2009, 30: 713
[31] Qin Z R, Jing Y Z, Dong Z A. The influence of copper content to the microstructure and corrosion behavior of cast stainless steel [J]. Shanghai Met., 1995, 17(5): 51
[31] 秦紫瑞, 景银忠, 董哲安. Cu含量对铸造不锈钢的组织及其腐蚀行为的影响 [J]. 上海金属, 1995, 17(5): 51
[32] Nan L, Liu Y Q, Yang W C, et al. Study on antibacterial properties of coppercontaining antibacterial stainless steel [J]. Acta Metall. Sin., 2007, 43: 1065
[32] 南 黎, 刘永前, 杨伟超等. 含铜抗菌不锈钢的抗菌特性研究 [J]. 金属学报, 2007, 43: 1065
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[7] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[8] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[9] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[12] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[13] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[14] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[15] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
No Suggested Reading articles found!