Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 831-841    DOI: 10.11900/0412.1961.2015.00602
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTRON BEAM WELDMENT OF TITANIUM ALLOY TC17
Bingbing YU1,Zhiyong CHEN1(),Zibo ZHAO1,Jianrong LIU1,Qingjiang WANG1,Jinwei LI2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
2 Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China.
Cite this article: 

Bingbing YU,Zhiyong CHEN,Zibo ZHAO,Jianrong LIU,Qingjiang WANG,Jinwei LI. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTRON BEAM WELDMENT OF TITANIUM ALLOY TC17. Acta Metall Sin, 2016, 52(7): 831-841.

Download:  HTML  PDF(1470KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Most titanium alloys have been designed for aeronautical applications, where their excellent specific properties are fully employed and weldability is a classic problem with Ti and its alloys. Microstructure and mechanical properties of the electron beam weldments of TC17 alloy were investigated in this work. The results showed that there exhibited three zones across the TC17 electron beam weldment: the fusion zone (FZ), heat affected zone (HAZ) and base metal (BM). It was also observed that the as-welded FZ consisted of metastable β columnar grains, while the HAZ consisted of acicular α/α′ phase, equiaxed α phase and metastable β phase. Furthermore, it was indicated that the transformation from metastable β phase to α+β phase happened when the FZ and HAZ were post-weld heat treated at 630~800 ℃, the coarsening of α laths and the grain boundary α were also observed when the heat treatment temperature increased. The increasing of 450 ℃ ultimate tensile strength of FZ was ascribed to the precipitation of secondary acicular α platelets during tensile testing in the as-welded and 800 ℃ heat treated conditions, which led to the low yield ratio of FZ. The tensile failure location of the weldments was found to occur in preference in the low tensile yield strength area, or in the low hardness area when the difference between yield strength across the weldments is very small. It was concluded that the optimal post-weld heat treatment for the TC17 alloy weldment was 630 ℃, 2 h, A.C., at which the weldments showed good combination of tensile strength and elongation.

Key words:  TC17 titanium alloy      electron beam welding      microstructure      mechanical property     
Received:  20 November 2015     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00602     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/831

Fig.1  Microstructure of TC17 titanium alloy forging
Heat treatment Process
S-PWHT1 630 ℃, 2 h, A.C.
S-PWHT2 700 ℃, 2 h, A.C.
S-PWHT3 800 ℃, 2 h, A.C.
D-PWHT2 700 ℃, 2 h, A.C.+630 ℃, 2 h, A.C.
D-PWHT3 800 ℃, 2 h, A.C.+630 ℃, 2 h, A.C.
Table 1  Post-weld heat treatments (PWHTs) of TC17 alloy weldments
Fig.2  Schematics of location of the fusion zone (FZ) in the tensile specimen (unit: mm, BM—base metal) (a) tensile specimen of weldment (b) tensile specimen of FZ
Fig.3  Macrostructure of electron beam welding (EBW) weldment of TC17 titanium alloy (HAZ—heat affected zone)
Fig.4  OM (a), SEM (b) and TEM (c) images of FZ in as-welded TC17 EBW weldment (Inset shows the SAED pattern in the square region of Fig.4c)
Fig.5  XRD spectrum of FZ of as welded TC17 titanium alloy EBW weldment
Fig.6  XRD spectra of FZ of TC17 EBW weldment after different PWHTs (a) S-PWHT1 (b) S-PWHT2 (c) S-PWHT3 (d) D-PWHT2 (e) D-PWHT3
Fig.7  Microstructures of FZ of TC17 EBW weldment after different PWHTs (Insets show high magnified images)

(a) S-PWHT1 (b) S-PWHT2 (c) S-PWHT3 (d) D-PWHT2 (e) D-PWHT3

Fig.8  SEM images of HAZ in as-welded TC17 EBW weldment (Insets show high magnified images)

(a) far-HAZ (b) middle-HAZ (c) near-HAZ

Fig.9  TEM image and SAED pattern (inset) of near-HAZ in EBW weldment of TC17 alloy
Fig.10  SEM images of near-HAZ in TC17 EBW weldment after different PWHTs (Insets show high magnified images)

(a) S-PWHT1 (b) S-PWHT2 (c) S-PWHT3 (d) D-PWHT2 (e) D-PWHT3

Fig.11  Microhardness across the TC17 EBW weldments of as-welded condition and after different PWHTs

(a) as-welded (b) S-PWHT1 (c) S-PWHT2 (d) S-PWHT3 (e) D-PWHT2 (f) D-PWHT3

Fig.12  Average microhardness of FZ and BM in TC17 EBW weldment of as-welded condition and after different PWHTs
Fig.13  Pseudo-binary section through a β isomorphous phase diagram (schematically)[2] (Ms—martenite starting transformation temperature)
Fig.14  Low (a) and locally high (b) maginified fractographs of room temperature tensile specimens of FZ in TC17 EBW weldments after S-PWHT3
Fig.15  TEM image of as welded FZ after 450 ℃ tensile testing
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ Failure location
Room temperature As-welded 840 996 6.0 FZ
S-PWHT1 1133 1188 9.8 BM
S-PWHT2 1017 1085 14.2 BM
S-PWHT3
D-PWHT2
886 904 16.3 BM
1041 1103 12.8 BM
D-PWHT3 1088 1159 4.8 FZ
450 ℃ As-welded 773 918 16.0 BM
S-PWHT1 770 903 14.0 BM
S-PWHT2 740 870 14.8 BM
S-PWHT3* 640 965 12.5 FZ
640 1000 20.0 BM
D-PWHT2 703 825 16.8 BM
D-PWHT3 763 893 8.3 FZ
Table 2  Room temperature and 450 ℃ tensile properties of TC17 titanium alloy EBW weldments after different PWHTs
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ σ0.2/σb
Room temperature

As-welded 792 878 11.0 0.90
S-PWHT1 1341 1368 2.5 0.98
S-PWHT2 1054 1084 6.3 0.97
S-PWHT3 867 878 7.7 0.98
D-PWHT2 1073 1108 6.0 0.97
D-PWHT3 1034 1089 7.3 0.95
450 ℃ As-welded 890 1280 4.0 0.70
S-PWHT1 927 1040 8.8 0.89
S-PWHT2 780 858 6.5 0.91
S-PWHT3 658 900 9.7 0.73
D-PWHT2 810 907 7.3 0.89
D-PWHT3 763 882 10.0 0.87
Table 3  Room temperature and 450 ℃ tensile properties of FZ in TC17 EBW weldments after different PWHTs
Tensile temperature Heat treatment σ0.2 / MPa σb / MPa δ σ0.2/σb
Room temperature


As received 1165 1220 10.3 0.95
S-PWHT1 1086 1120 10.5 0.97
S-PWHT2 1004 1034 15.3 0.97
S-PWHT3 944 971 16.0 0.97
D-PWHT2 1030 1058 12.5 0.97
D-PWHT3 1217 1273 10.0 0.96
450 ℃




As received 785 905 18.3 0.87
S-PWHT1 763 870 19.0 0.88
S-PWHT2 695 785 20.8 0.89
S-PWHT3 725 1045 22.0 0.69
D-PWHT2 713 813 17.5 0.88
D-PWHT3 850 975 19.0 0.87
Table 4  Room temperature and 450 oC tensile properties of BM after different heat treatments (mass fraction / %)
[1] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys. Beijing: Chemical Industry Press, 2005: 297
[1] (Leyens C, Peters M著, 陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 297)
[2] Lütjering G, Willams J C, translated by Lei T, Yang X Y, Fang S M. Titanium. 2nd Ed., Beijing: Metallurgical Industry Press, 2011: 8
[2] (Lütjering G, Willams J C著, 雷霆, 杨晓源, 方树铭译. 钛. 第二版, 北京: 冶金工业出版社, 2011: 8)
[3] Kou S, translated by Yan J C, Yang J G, Zhang G J. Welding Metallurgy. 2nd Ed., Beijing: Higher Education Press, 2012: 27
[3] (Kou S著, 阎久春, 杨建国, 张广军译. 焊接冶金学. 第二版, 北京: 高等教育出版社, 2012: 27)
[4] Qi Y L, Deng J, Hong Q, Zeng L Y.Mater Sci Eng, 2000; A280: 177
[5] Wang T, Guo H Z, Tan L J, Yao Z K, Zhao Y, Liu P H.Mater Sci Eng, 2011; A528: 6375
[6] Appolaire B, Da Costa Teixeira J, Aeby-Gautier E, Denis S, Cailletaud G, Spath N.Mater Sci Eng, 2007; A448: 135
[7] Wang J Y, Ge Z M, Zhou Y B.Titanium Alloy for Aerospace. Shanghai: Shanghai Science and Technology Press, 1985: 182
[7] (王金友, 葛志明, 周彦邦. 航空用钛合金. 上海: 上海科学技术出版社, 1985: 182)
[8] Lu W, Li X Y, Lei Y P, Shi Y W.Mater Sci Eng, 2012; A540: 135
[9] Pederson R, Niklasson F, Skystedt F, Warren R.Mater Sci Eng, 2012; A552: 555
[10] Prasad Rao K, Angamuthu K, Bala Srinivasan P.J Mater Process Technol, 2008; 199: 185
[11] Zhou L, Liu H J, Liu P, Liu Q W.Scr Mater, 2009; 61: 596
[12] Chen Z Y, Wang Q J, Liu J R, Li Y L, Yang R, Li J W, Liu F J.Acta Metall Sin, 2008; 44: 263
[12] (陈志勇, 王清江, 刘建荣, 李玉兰, 杨锐, 李晋炜, 刘方军. 金属学报, 2008; 44: 263)
[13] Chen Z Y, Li J W, Liu J, Wang Q J, Liu J R, Yang R.J Mater Sci Technol, 2010; 26: 564
[14] Ji Y, Wu S, Yu G.Fatigue Fract Eng Mater Struct, 2013; 37: 39
[15] Ma T J, Li W Y, Zhong B, Zhang Y, Li J L. Sci Technol Weld Joining, 2012; 17: 180
[16] Li W Y, Ma T J, Yang S Q.Adv Eng Mater, 2010; 12: 35
[17] Wang S Q, Liu J H, Chen D L.Mater Sci Eng, 2013; A584: 47
[18] Wang S Q, Liu J H, Chen D L.Mater Des, 2013; 49: 716
[19] Gogia A K.Def Sci J, 2005; 55(2): 147
[20] Chen Z Y.PhD Dissertation, Institute of Metal Research, Chinese Academy of Science, Shenyang, 2008
[20] (陈志勇. 中国科学院金属研究所博士学位论文, 沈阳, 2008)
[21] Sabol J C, Pasang T, Misiniolek W Z, Willams J C.J Mater Process Technol, 2012; 212: 2380
[22] Tang X, Ahmed T, Rack H J.J Mater Sci, 2000; 35: 1805
[23] Najdahmadi A, Zarei-Hanzaki A, Farghadani E.Mater Des, 2014; 54: 786
[24] Sakaguch N, Niinomi M, Akahori T.Mater Trans, 2004; 45: 1113
[25] Hao Y L, Niinomi M, Kuroda D, Fukunaga K, Zhou Y L, Yang R, Suzuki A.Metall Mater Trans, 2002; 33A: 3137
[26] Hao Y L, Yang R, Li S J, Cui Y Y, Li D.Acta Metall Sin, 2002; 38(z1): 236
[26] (郝玉琳, 杨锐, 李述军, 崔玉友, 李东. 金属学报, 2002; 38(z1): 236)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!