Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 842-850    DOI: 10.11900/0412.1961.2016.00018
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF HOT ISOSTATIC PRESSING PARAMETERSON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER METALLURGY Ti-5Al-2.5Sn ELI ALLOY
Ruipeng GUO1,2,Lei XU1(),Wenxiang CHENG3,Jiafeng LEI1,Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
Cite this article: 

Ruipeng GUO,Lei XU,Wenxiang CHENG,Jiafeng LEI,Rui YANG. EFFECT OF HOT ISOSTATIC PRESSING PARAMETERSON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER METALLURGY Ti-5Al-2.5Sn ELI ALLOY. Acta Metall Sin, 2016, 52(7): 842-850.

Download:  HTML  PDF(857KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Near-net-shape forming through powder metallurgy (PM) route is a cost-efficient approach to produce the hard-to-machining materials such as titanium alloys. Hot isostatic pressing (HIPing) is a common technique to fabricate PM titanium alloys and components. Prealloyed powder metallurgy through HIPing is considered as upgrade of precision casting for titanium alloys. Ti-5Al-2.5Sn ELI (extra-low interstitial) is a typical α-Ti alloy, which is widely used at cryogenic temperature. In this work, the Ti-5Al-2.5Sn ELI prealloyed powder was produced by electrode induction melting gas atomization. Characterization of the prealloyed powder was carried out to understand the following HIPing process. The influence of HIPing parameters on microstructure and mechanical properties of Ti-5Al-2.5Sn ELI powder compact was studied. The results show that the relative density of powder compact increases with the increasing of HIPing temperature and pressure. The mechanical properties of powder compact can achieve those of wrought materials, when the relative density is more than 99.5%. To balance the relative density, microstructure and mechanical properties of the powder compacts, the optimized HIPing parameters for Ti-5Al-2.5Sn ELI powder are temperature in the range of 890~940 oC, pressure above 120 MPa and holding for 3 h. The shielding effect of capsule will hinder the powder densification during HIPing process, which will likely cause non-uniform densification and degrade the relative density of powder compact. However, the shield effect can be weakened through proper tooling design and optimization of the HIPing procedure.

Key words:  Ti-5Al-2.5Sn ELI      powder metallurgy      hot isostatic pressing      shielding effect     
Received:  08 January 2016     
Fund: Supported by National High Technology Research and Development Program of China (No.2013-AA031606) and National Natural Science Foundation of China (No.U1302272)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00018     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/842

Sample Al Sn Fe Si C O N H Ti
ASTM B348 4.50~5.75 2.00~3.00 <0.25 <0.05 <0.05 <0.12 <0.035 <0.0125 Bal.
Electrode 5.01 2.49 0.06 0.006 0.006 0.076 0.005 0.001 Bal.
Powder 5.14 2.50 0.06 0.006 0.006 0.080 0.006 0.001 Bal.
Table 1  Chemical compositions of ASTM B348 reference material and Ti-5Al-2.5Sn ELI prealloyed powder (mass fraction / %)
Fig.1  SEM images of Ti-5Al-2.5Sn ELI powder surfaces at low (a) and high (b) magnification
Fig.2  XRD spectra of Ti-5Al-2.5Sn ELI prealloyed powder after annealing at different temperatures
Process T / ℃ P / MPa t / h ρ / % dmax / μm
HIP-1 800 40 3 93.22 120
HIP-2 800 100 3 99.01 39
HIP-3 800 140 3 99.43 15
HIP-4 890 40 3 96.65 110
HIP-5 890 100 3 99.40 13
HIP-6 890 140 3 99.59 10
HIP-7 940 40 3 98.88 26
HIP-8 940 100 3 99.72 10
HIP-9 940 140 3 99.90 10
Table 2  Relative density and maximum pore size of powder metallurgy (PM) Ti-5Al-2.5Sn ELI alloys under various hot isostatic pressing (HIPing) conditions
Process 25 oC -253 oC
σb / MPa σs / MPa δ / % A / (kJm-2) σb / MPa σs / MPa δ / %
HIP-1 611 BF BF 33 BF BF BF
HIP-2 843 752 13.3 213 BF BF BF
HIP-3 860 755 16.2 419 1530 1390 16.3
HIP-4 768 715 7.6 103 1440 1316 5.0
HIP-5 795 722 16.5 600 1460 1340 18.6
HIP-6 844 725 16.5 610 1480 1325 15.2
HIP-7 798 739 14.0 228 1440 1294 16.7
HIP-8 789 737 14.2 700 1433 1309 15.3
HIP-9 805 740 16.5 620 1450 1340 22.3
Table 3  Mechanical properties of PM Ti-5Al-2.5Sn ELI alloys under various HIPing conditions
Fig.3  OM images of PM Ti-5Al-2.5Sn ELI alloys HIPed at 800 ℃, 40 MPa, 3 h (a), 800 ℃, 140 MPa, 3 h (b), 890 ℃, 40 MPa, 3 h (c) and 940 ℃, 140 MPa, 3 h (d) (PPB—prior partical boundary)
Fig.4  Porosity distribution of PM Ti-5Al-2.5Sn ELI alloys HIPed at 800 ℃, 140 MPa, 3 h (a), 890 ℃, 40 MPa, 3 h (b), 940 ℃, 40 MPa, 3 h (c) and 940 ℃, 140 MPa, 3 h (d)
Fig.5  Contour map of relative density of PM Ti-5Al-2.5Sn ELI alloys under different HIPing conditions
Fig.6  Peak stress of mild steel, fully dense and partially HIPed Ti-5Al-2.5Sn ELI alloys at different temperatures (The individual partially HIPed samples are tested at the temperature at which they have been HIPed and the respective relative densities are given)
Fig.7  Shielding stress of capsule with different d/r value at different temperatures
d / mm r / mm d/r ρ / %
1 7.5 0.13 99.90
3 7.5 0.40 99.72
5 7.5 0.67 99.50
7 7.5 0.93 99.20
9 7.5 1.20 98.90
15 7.5 2.00 98.50
3 20.0 0.15 99.90
Table 4  Relative densities of PM Ti-5Al-2.5Sn ELI alloys HIPed with different capsule parameters
[1] Boyer R R.Mater Sci Eng, 1996; A213: 103
[2] Williams J C, Starke E A.Acta Mater, 2003; 51: 5775
[3] Guo R P, Xu L, Bai C G, Wu J, Wang Q J, Yang R.Chin J Nonfe-rrous Met, 2014; 24: 2050
[3] (郭瑞鹏, 徐磊, 柏春光, 吴杰, 王清江, 杨锐. 中国有色金属学报, 2014; 24: 2050)
[4] Bolzoni L, Ruiz-Navas E M, Gordo E.Mater Des, 2013; 52: 888
[5] Yuan W X, Mei J, Samarov V, Seliverstov D, Wu X.J Mater Process Technol, 2007; 182: 39
[6] Baccino R, Morret F, Fellerin F, Guichard D, Raisson G.Mater Des, 2000; 21: 345
[7] Froes F H, Mashl S J.JOM, 2004; 56: 46
[8] Atkinson H V, Davies S.Metall Mater Trans, 2000; 31A: 2981
[9] Lee Y T, Schurmann H, Grundhoff K J, Peter M.Int J Powder Metall, 1990; 22: 11
[10] Wu J. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2011
[10] (邬军. 中国科学院金属研究所硕士学位论文, 沈阳, 2011)
[11] Sanchez L, Ouedraogo E, Dellis C, Federzoni L.Powder Metall, 2004; 47: 253
[12] Olevsky E, Maximenko A, Dyck S, Froyen L, Delaey L, Buekenhout L.Int J Solids Struct, 1998; 35: 2283
[13] Nguyen C, Bezold A, Broeckmann C.J Mater Process Technol, 2015; 226: 134
[14] Guo R P, Xu L, Wu J, Yang R, Zong B Y.Mater Sci Eng, 2015; A639: 327
[15] Zhang K, Mei J, Wain N, Wu X.Metall Mater Trans, 2010; 41A: 1033
[16] Xu L, Guo R P, Chen Z Y, Jia Q, Wang Q J.Chin J Mater Res, 2016; 30: 23
[16] (徐磊,郭瑞鹏, 陈志勇, 贾清, 王清江. 材料研究学报, 2016; 30: 23)
[17] Cao L F, Wu X D, Zhu S M, Mei J F, Wu X H, Bettles C.Mater Sci Eng, 2014; A598: 207
[18] Xu L, Guo R P, Bai C G, Lei J F, Yang R.J Mater Sci Technol, 2014; 30: 1289
[19] Li S Q, Chen Z Y, Wang Z H, Liu J R, Wang Q J, Yang R.Acta Metall Sin, 2013; 49: 464
[19] (李少强, 陈志勇, 王志宏, 刘建荣, 王清江, 杨锐. 金属学报, 2013; 49: 464)
[20] Bear D R, Merz M D.Metall Trans, 1980; 11A: 1973
[21] Guo Z, Malinov S, Sha W.Comp Mater Sci, 2005; 32: 1
[22] Arzt E, Ashby M F, Easterling K E.Metall Trans, 1983; 14A: 211
[23] Li S Q, Chen Z Y, Wang Z H, Liu J R, Wang Q J, Yang R.Chin J Mater Res, 2013; 27: 97
[23] (李少强, 陈志勇, 王志宏, 刘建荣, 王清江,杨锐. 材料研究学报, 2013; 27: 97)
[24] Wang H T, Fang Z Z, Sun P.Int J Powder Metall, 2010; 46: 45
[25] Yuri T, Ono Y, Ogata T.Sci Technol Adv Mater, 2003; 4: 291
[26] Dong P.Met Forming Technol, 2002; 20(3): 12
[26] (董平. 金属成形工艺, 2002; 20(3): 12)
[27] Guo R P, Xu L, Zong B Y, Yang R.Mater Des, 2016; 99: 341
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[6] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
[7] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[8] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[10] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[11] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[12] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[13] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[14] MA Guonan, WANG Dong, LIU Zhenyu, BI Sheng, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2019, 55(10): 1319-1328.
[15] Lei XU, Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG. Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder[J]. 金属学报, 2018, 54(11): 1537-1552.
No Suggested Reading articles found!