Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 821-830    DOI: 10.11900/0412.1961.2015.00537
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF Er MICRO-ALLOYING ON MECHANICAL PROPERTIES AND MICROSTRUCTURES OF 2055 Al-Li ALLOY
Jinfeng LI1(),Danyang LIU1,Ziqiao ZHENG1,Yonglai CHEN2,Xuhu ZHANG2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China.
2 Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China.
Cite this article: 

Jinfeng LI,Danyang LIU,Ziqiao ZHENG,Yonglai CHEN,Xuhu ZHANG. EFFECT OF Er MICRO-ALLOYING ON MECHANICAL PROPERTIES AND MICROSTRUCTURES OF 2055 Al-Li ALLOY. Acta Metall Sin, 2016, 52(7): 821-830.

Download:  HTML  PDF(1296KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Li alloys are considered as the ideal structural materials for aerospace industry because of their low density, high specific strength and specific elastic modulus as well as low fatigue crack growth rate and good low temperature performance. 2055 Al-Li alloy among new Al-Li alloys developed recently is a super-high strength Al-Li alloy. An important method to improve the performance of Al-Li alloys is to add micro-alloying elements. Er-microalloying in Al alloy has been investigated much, but the study on Al-Li alloy is still seldom reported. In this work, the effect of 0.2%Er and 0.4%Er addition on the microstructure and mechanical properties of 2055 Al-Li alloy sheet with T8 aging (6% cold rolling pre-deformation and aging at 160 ℃) were investigated. The results show that the addition of 0.2% Er significantly decreases the strength by about 50 MPa, but enhances the elongation; the strength is further decreased by about 100 MPa with the addition of 0.4%Er. The precipitate types in Er micro-alloyed Al-Li alloy are not changed with the addition of Er, and the aging precipitates are still T1 (Al2CuLi) and θ' (Al2Cu) phases. In the Er-microalloyed Al-Li alloy, the incubation time of T1 precipitate is longer, and its precipitation rate is decreased, accordingly the aging response is slowed. Meanwhile, under peak-aging condition, the fraction of T1 precipitates, especially θ' precipitates in the Er-microalloyed Al-Li alloy is decreased, which results in a decrease of strength. As Er is added to the Al-Li alloy, Er-contained particles Al8Cu4Er are formed during solidification process, and their amount is increased with the addition increasing. These particles cannot be completely dissolved into the alloy matrix during homogenization process. After solution treatment following cold rolling, they are not yet dissolved into the solid solution. These particles contain Cu and Er simultaneously, and the concentration of dissolved Cu in solid solution is therefore decreased. With increasing Er addition, the Cu concentration in solid solution is further decreased. The precipitation rate of T1 is consequently decreased, slowing the aging response of the Er-microalloyed Al-Li alloy. And this factor also decreases the fraction of T1 and θ' precipitates and lowers the alloy strength.

Key words:  2055 Al-Li alloy      Er micro-alloying      microstructure      strength     
Received:  18 October 2015     
Fund: Supported by National High Technology Research and Development Program of China (No.2013AA032401) and Teacher's Research Foundation of Central South University (No.2013JSJJ001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00537     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/821

Alloy Cu Li
2055 3.58 1.18
2055+0.2%Er 3.56 1.19
2055+0.4%Er 3.60 1.11
Table 1  Cu and Li concentrations of experimental Al-Li alloy(mass fraction/%)
Fig.1  Tensile strength (a), yield strength (b) and elongation (c) of Al-Li alloys as a function of ageing time at T8 ageing (6% cold rolling pre-deformation and ageing at 160 ℃)
Fig.2  SAED patterns (a, c) and TEM images (b, d) of Er-free (a, b) and containing 0.2%Er (c, d) Al-Li alloys after ageing at 160 ℃ for 4 h (Inserts in Figs. 2b and d show the SAED patterns of [112]Al)
Fig.3  Dark field TEM images of Er-free (a, b) and containing 0.2%Er (c, d) Al-Li alloys after T8 peak-ageing (Insets in Figs.3a and c show the SAED patterns of [100]Al and those in Figs.3b and d for [112]Al)
Fig.4  BSE images of cast microstructure of Er-free (a), containing 0.2%Er (b) and 0.4%Er (c) Al-Li alloys
Fig.5  BSE image of cast Al-Li alloy containing 0.2%Er (a) and EDS analyses of particles A (b), B (c) and C (d) in Fig.5a
Fig.6  BSE images of homogenized microstructure of Er-free (a), containing 0.2%Er (b) and 0.4%Er (c) Al-Li alloys
Fig.7  BSE image of homogenized microstructure of Er-free 2055 Al-Li alloy (a) and EDS analysis of particle (arrow) in Fig.7a (b)
Fig.8  BSE images of homogenized Al-Li alloy containing 0.2%Er (a, c) and EDS analyses of particle A in Fig.8a (b) and particle B in Fig.8c (d)
Fig.9  XRD spectra of cast and homogenized Al-Li alloy containing 0.4%Er
Fig.10  BSE images of Al-Li alloy containing 0.2%Er after cold-rolling (a), and then followed by solution treatment (b) and ageing (c), and solutionized Al-Li alloy without Er (d)
Fig.11  BSE image of solutionized microstructure of Al-Li alloy containing 0.4%Er (a) and EDS analyses of particles A (b) and B (c) in Fig.11a
Table 2  Cu and Li concentrations in original Al-Li alloys and their solid solution
[1] Rioja R J, Liu J.Metall Mater Trans, 2012; 43A: 3325
[2] Li J F, Zheng Z Q, Chen Y L, Zhang X H.Aero Mater Technol, 2012; 42(1): 13
[2] (李劲风, 郑子樵, 陈永来, 张绪虎. 宇航材料工艺, 2012; 42(1): 13)
[3] Rioja R J, Denzer D K, Mooy D, Venema G B.In: Weiland H, Rollett A D, Cassada W A, Eds., Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13). Pittsburg: TMS, 2012: 593
[4] Wang R Q, Zheng Z Q, Chen Y Y, Li S C, Wei X Y.Rare Met Mater Eng, 2009; 38: 622
[4] (王瑞琴, 郑子樵, 陈圆圆, 李世晨, 魏修宇. 稀有金属材料与工程, 2009; 38: 622)
[5] Yi H K, Zheng Z Q.J Cent South Univ Technol: Nat Sci, 1999; 30: 292
[5] (易宏坤, 郑子樵. 中南工业大学学报(自然科学版), 1999; 30: 292)
[6] Hirosawa S, Sato T, Kamio A. Mater Sci Eng, 1998; A242: 195
[7] Murayama M, Hono K.Scr Mater, 1998; 38: 1315
[8] Jiang N, Gao X, Zheng Z Q.Trans Nonferrous Met Soc, 2010; 20: 740
[9] Wei X Y, Zheng Z Q, She L J, Chen Q N, Li S C.Rare Met Mater Eng, 2010; 39: 1583
[9] (魏修宇, 郑子樵, 佘玲娟, 陈秋妮, 李世晨. 稀有金属材料与工程, 2010; 39: 1583)
[10] Zhu X H, Zheng Z Q, Zhong S.Chin J Nonferrous Met, 2010; 20: 1861
[10] (朱小辉, 郑子樵, 钟申. 中国有色金属学报, 2010; 20: 1861)
[11] Romios M, Tiraschi R, Parrish C, Babel H W, Ogren J R, Es-Said O S. J Mater Eng Perform, 2005; 14: 641
[12] Yuan Z S, Lu Z, Xie Y H, Dai S L, Liu C S.J Aeron Mater, 2006; 26(3): 79
[12] (袁志山, 陆政, 谢优华, 戴圣龙, 刘常升. 航空材料学报, 2006; 26(3): 79)
[13] Wang Z. Master Thesis, Central South University, Changsha, 2014
[13] (王哲. 中南大学硕士学位论文, 长沙, 2014)
[14] Xu G F, Yang J J, Jin T N, Nie Z R, Yin Z M.Chin J Nonferrous Met, 2006; 16: 768
[14] (徐国富, 杨军军, 金头男, 聂祚仁, 尹志民. 中国有色金属学报, 2006; 16: 768)
[15] Yang J J, Nie Z R, Jin T N, Ruan H Q, Zuo T Y.Chin J Nonferrous Met, 2004; 14: 620
[15] (杨军军, 聂祚仁, 金头男, 阮海琼, 左铁镛. 中国有色金属学报, 2004; 14: 620)
[16] Fu J B, Nie Z R, Yang J J, Jin T N, Zou J X, Zuo T Y.Chin J Rare Met, 2005; 29: 558
[16] (付静波, 聂祚仁, 杨军军, 金头男, 邹景霞, 左铁镛. 稀有金属, 2005; 29: 558)
[17] Xu G F, Mou S Z, Yang J J, Jin T N, Nie Z R, Yin Z M.Trans Nonferrous Met Soc, 2006; 16: 106
[18] Yang J J, Nie Z R, Jin T N, Xu G F, Fu J B, Yuan H Q, Zuo T Y.Trans Nonferrous Met Soc, 2003; 13: 1035
[19] Zhao Z K, Zhou T T, Liu P Y, Chen C Q.Rare Met Mater Eng, 2004; 33: 1108
[19] (赵中魁, 周铁涛, 刘培英, 陈昌麒. 稀有金属材料与工程, 2004; 33: 1108)
[20] Qin X. Master Thesis, Beijing University of Technology, 2004
[20] (秦肖. 北京工业大学硕士学位论文, 2004)
[21] Yang J J, Nie Z R, Jin T N, Xu G F, Fu J B, Zuo T Y.J Chin Rare Earth Soc, 2002; 20: 159
[21] (杨军军, 聂祚仁, 金头男, 徐国富, 付静波, 左铁镛. 中国稀土学报, 2002; 20: 159)
[22] Li Y T, Liu Z Y, Xia Q K, Yu R C, Liu Y B.Trans Mater Heat Treat, 2007; 28(2): 49
[22] (李云涛, 刘志义, 夏卿坤, 余日成, 刘延斌. 材料热处理学报, 2007; 28(2): 49)
[23] Li Y T, Liu Z Y, Xia Q K, Yu R C.J Cent South Univ Technol: Nat Sci, 2006; 37: 1043
[23] (李云涛, 刘志义, 夏卿坤, 余日成. 中南大学学报(自然科学版), 2006; 37: 1043)
[24] Denzer D K, Rioja R J, Rioja R J, Venema G B, Colvin E L.In: Weiland H, Rollett A D, Cassada W A, Eds., Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13). Pittsburg: TMS, 2012: 587
[25] Luo X F, Zheng Z Q, Zhong J F, Zhang H F, Zhong J, Li S C, Li J F.Chin J Nonferrous Met, 2013; 23: 1833
[25] (罗先甫, 郑子樵, 钟继发, 张海锋, 钟警, 李世晨, 李劲风. 中国有色金属学报, 2013; 23: 1833)
[26] Dursun T, Soutis C.Mater Des, 2014; 56: 862
[27] Li J F, Liu P L, Chen Y L, Zhang X H, Zheng Z Q.Trans Nonferrous Met Soc China, 2015; 25: 2103
[28] Zhang J, Zhu R H, Li J F, Ma Y L, Liu D B, Zheng Z Q.Chin J Nonferrous Met, 2015; 25: 3300
[28] (张健, 朱瑞华, 李劲风, 马云龙, 刘德博, 郑子樵. 中国有色金属学报, 2015; 25: 3300)
[29] Decreus B, Deschamps A, De Geuser F, Donnadieu P, Sigli C, Weyland M.Acta Mater, 2013; 61: 2207
[30] Lei G X. Light Alloy Fabr Technol, 1990; (2): 5
[30] (雷广孝. 轻合金加工技术, 1990; (2): 5)
[31] Tang A T.Chin Rare Earths, 1991; 12(5): 48
[31] (汤爱涛. 稀土, 1991; 12(5): 48)
[32] Pan F S, Zhou S Z, Shi G Q, Ding P D.Light Alloy Fabr Technol, 1990; (3): 1
[32] (潘复生, 周守则, 石功奇, 丁培道. 轻合金加工技术, 1990; (3): 1)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[10] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!