Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1024-1034    DOI: 10.11900/0412.1961.2023.00410
  研究论文 本期目录 | 过刊浏览 |
Mn偏析对0.3C-11Mn-2.7Al-1.8Si-Fe中锰钢力学性能的影响及作用机制
蔡星周1, 刘胜杰1, 张禹森1, 李小龙1, 张宇鹤1, 张文彬1, 陈雷1(), 金淼1,2
1 燕山大学 机械工程学院 秦皇岛 066004
2 通裕重工股份有限公司 禹城 251200
Effect of Mn Segregation on Mechanical Properties of 0.3C-11Mn-2.7Al-1.8Si-Fe Medium Mn Steel and Its Mechanism
CAI Xingzhou1, LIU Shengjie1, ZHANG Yusen1, LI Xiaolong1, ZHANG Yuhe1, ZHANG Wenbin1, CHEN Lei1(), JIN Miao1,2
1 Collenge of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
2 Tongyu Heavy Industry Co. Ltd., Yucheng 251200, China
引用本文:

蔡星周, 刘胜杰, 张禹森, 李小龙, 张宇鹤, 张文彬, 陈雷, 金淼. Mn偏析对0.3C-11Mn-2.7Al-1.8Si-Fe中锰钢力学性能的影响及作用机制[J]. 金属学报, 2025, 61(7): 1024-1034.
Xingzhou CAI, Shengjie LIU, Yusen ZHANG, Xiaolong LI, Yuhe ZHANG, Wenbin ZHANG, Lei CHEN, Miao JIN. Effect of Mn Segregation on Mechanical Properties of 0.3C-11Mn-2.7Al-1.8Si-Fe Medium Mn Steel and Its Mechanism[J]. Acta Metall Sin, 2025, 61(7): 1024-1034.

全文: PDF(4771 KB)   HTML
摘要: 

为了探究Mn元素偏析对中锰钢力学性能、微观结构及变形机制的影响,本工作以一种奥氏体基双相中锰钢(0.3C-11Mn-2.7Al-1.8Si-Fe,质量分数,%)为研究对象,对比分析了Mn偏析对显微组织的影响,着重探究了Mn偏析对冷轧退火后中锰钢力学行为的微观作用机制。结果表明,Mn偏析使得中锰钢中奥氏体表现出带状分布特征,富Mn偏析带内奥氏体晶粒粗大且稳定性高,铁素体晶粒细小且分布稀疏。塑性变形过程中,无偏析区内奥氏体的主控变形机制为孪晶和马氏体相变,即相变诱导塑性(TRIP) + 孪晶诱导塑性(TWIP)效应共存,但相变速率较快。富Mn区奥氏体稳定性增加,变形机制虽为马氏体相变,但TRIP效应受限。与均质非偏析中锰钢相比,尽管含富Mn区中锰钢细晶区域可提供较高的加工硬化能力,但塑性与断裂韧性明显降低。

关键词 中锰钢奥氏体粗晶TRIP + TWIP效应加工硬化Mn偏析    
Abstract

Improvements in passenger safety and fuel efficiency are crucial issues in the automotive industry. The use of advanced high-strength steel (AHSS) in automotive parts has been suggested as a solution to these issues because it enables large weight reduction and good crash worthiness. Strength and ductility are the key mechanical properties of automotive AHSS. However, high strength is often accompanied by low ductility, resulting in the so-called strength-ductility trade-off dilemma. Currently, there is an increasing demand for automotive AHSS that exhibits a balance between strength and ductility. Lightweight and high-strength medium Mn steel (MMnS with a Mn mass fraction of 3%-12%), as a representative example of the third-generation automotive AHSS, has an excellent combination of strength and plasticity due to the effective usage of the coupled transformation-induced plasticity (TRIP) effect and twinning-induced plasticity (TWIP) effect of the metastable austenite constituent upon deformation. To further improve comprehensive mechanical properties, MMnS with a high Mn content were developed to increase the austenite fraction. Thus, a duplex structure with an ultrafine ferrite and austenite matrix was formed. However, Mn segregation is likely to occur in MMnS with increasing Mn content, especially in the cases of Mn > 10% (mass fraction), which considerably influences MMnS's performance. Therefore, the effects of Mn segregation on the overall mechanical properties, microstructure, and deformation mechanism of MMnS need to be elucidated in more details. In this paper, the influence of Mn segregation on the microstructure and mechanical properties of MMnS with an austenite-ferrite duplex structure and a nominal composition of 0.3C-11Mn-2.7Al-1.8Si-Fe was systemically investigated. Specifically, the underlying mechanism of Mn segregation that affects the mechanical and microstructural behavior of cold-rolled and annealed MMnS was analyzed. The results show that Mn segregation causes the formation of a Mn-rich banded structure, where the grain size of austenite is larger, austenite stability is higher, and fine ferrite is distributed more sparsely on the austenite matrix compared with the case without Mn segregation. The dominant plastic deformation mechanism of austenite in the non-Mn segregation zone involves martensitic transformation and twinning, leading to the coupled TRIP + TWIP effect, while the rate of martensitic transformation is higher than those without Mn segregation. However, the martensitic transformation is inhibited in the austenite of the Mn-rich structure because of its higher stability, limiting the TRIP effect. Consequently, the test MMnS with Mn segregation shows lower ductility and fracture resistance than those without Mn segregation; moreover, its finer austenite enhances the work-hardening capacity.

Key wordsmedium Mn steel    coarse-grained austenite    TRIP + TWIP effect    work hardening    Mn segregation
收稿日期: 2023-10-08     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52275388);国家自然科学基金项目(52075474);中央引导地方科技发展资金项目(236Z1008G);河北省自然科学基金项目(E2022203206);燕山大学基础研究与创新人才培养项目(2021LGZD009);燕山大学基础研究与创新人才培养项目(2022BZZD002)
通讯作者: 陈 雷,chenlei@ysu.edu.cn,主要从事高强轻质金属材料的高性能制造技术研究
作者简介: 蔡星周,男,1977年生,博士
图1  0.3C-11Mn-2.7A1-1.8Si-Fe中锰钢计算相图与热机械处工艺路线理示意图
图2  中锰钢锻造板坯心部与表层显微组织的SEM像和Mn元素分布
图3  锻坯心部(S1)与近表层区域(S2)样品加工硬化曲线与真应力-应变曲线
SampleYS / MPaUTS / MPaTE / %
S1665.51172.854.38
S2627.31087.576.88
表1  S1与S2样品的力学性能
图4  S1样品微观组织的SEM像和Mn元素的EDS线扫描结果
图5  S1与S2样品的EBSD像和反极图(IPF)
图6  S1与S2样品原始态的铁素体与奥氏体的晶粒尺寸分布
图7  S1和S2样品不同应变下形变亚结构的TEM像和选区电子衍射(SAED)花样
图8  不同应变下S1和S2样品的EBSD像
图9  S1和S2样品断口形貌的SEM像
SampleComposition of austeniteGrain sizeVγMd30γSFEDeformation
(mass fraction / %)μm%oCmJ·m-2mechanism
CMnAlSi
S1 (rich Mn)0.7413.122.122.108.5292.4108.3310.44TRIP
S1 (low Mn)0.7311.152.251.901.5873.1123.8416.45TRIP + TWIP
S20.7311.722.231.931.5669.3118.9115.62TRIP + TWIP
表2  S1 (粗、细晶区)和S2样品中奥氏体的合金元素含量与晶粒尺寸及奥氏体特征结果
图10  S1与S2样品断口端面裂纹的EBSD像和SEM像
1 Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
2 Matlock D K, Speer J G. Third generation of AHSS: Microstructure design concepts [A]. Microstructure and Texture in Steels [M]. London: Springer, 2009: 185
3 Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
4 Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
4 王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
5 Yan S, Liang T S, Wang Z Q, et al. Novel 1.4 GPa-strength medium-Mn steel with uncompromised high ductility [J]. Mater. Sci. Eng., 2020, A773: 138732
6 Trang T T T, Heo Y U. Effect of solution treatment temperature on microstructure evolution and tensile property of a medium Mn steel having a lamellar structure [J]. Mater. Sci. Eng., 2021, A805: 140578
7 Zhang X L, Yan J H, Liu T, et al. Microstructural evolution and mechanical behavior of a novel heterogeneous medium Mn cold-rolled steel [J]. Mater. Sci. Eng., 2021, A800: 140344
8 Zhang J B, Sun Y R, Ji Z J, et al. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75: 139
doi: 10.1016/j.jmst.2020.10.022
9 Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process [J]. Acta Mater., 2019, 174: 131
10 Sun S H, Cai M H, Ding H, et al. Deformation mechanisms of a novel Mn-based 1 GPa TRIP/TWIP assisted lightweight steel with 63% ductility [J]. Mater. Sci. Eng., 2021, A802: 140658
11 Zhang Y, Ding H, Zhu H K, et al. Influence of microstructural morphology on the continuous/discontinuous yielding behavior in a medium manganese steel [J]. Mater. Sci. Eng., 2021, A824: 141746
12 Mohapatra S, Poojari G, Marandi L, et al. A systematic study on microstructure evolution, mechanical stability and the micro-mechanical response of tensile deformed medium manganese steel through interrupted tensile test [J]. Mater. Charact., 2023, 195: 112562
13 Jia Q X, Chen L, Chen X, et al. Enhancing strength-ductility synergy in medium Mn steel with hetero-structured austenite developed by two-stage cyclic thermomechanical treatment and flash annealing [J]. Scr. Mater., 2023, 226: 115196
14 Jia Q X, Chen L, Xing Z B, et al. Tailoring hetero-grained austenite via a cyclic thermomechanical process for achieving ultrahigh strength-ductility in medium-Mn steel [J]. Scr. Mater., 2022, 217: 114767
15 Patra A K, Athreya C N, Mandal S, et al. High strength-high ductility medium Mn steel obtained through CALPHAD based alloy design and thermomechanical processing [J]. Mater. Sci. Eng., 2021, A810: 140756
16 Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
17 De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
18 Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
19 Jo M C, Choi J H, Lee H, et al. Effects of solute segregation on tensile properties and serration behavior in ultra-high-strength high-Mn TRIP steels [J]. Mater. Sci. Eng., 2019, A740-741: 16
20 Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite [J]. Acta Mater., 2019, 164: 683
21 Chen X S, Huang X M, Liu J J, et al. Microstructure regulation and strengthening mechanisms of a hot-rolled & intercritical annealed medium-Mn steel containing Mn-segregation band [J]. Acta Metall. Sin., 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
21 陈学双, 黄兴民, 刘俊杰 等. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制 [J]. 金属学报, 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
22 He B B, Pan S. Revealing the intrinsic nanohardness of retained austenite grain in a medium Mn steel with heterogeneous structure [J]. Mater. Charact., 2021, 171: 110745
23 Zhang J Y, Xu Y B, Wang Y, et al. Achieving heterogeneous TWIP/TRIP steel with 1 GPa strength and 72% ductility by introducing austenite + martensite lamella structure [J]. Mater. Charact., 2023, 197: 112709
24 Sun S H, Li H Y, Huang H S, et al. Improved Mn-segregation bands and its influence on deformation behavior in a severely warm-rolled 10Mn lightweight steel [J]. Vacuum, 2023, 216: 112428
25 Liu S J. Study on the effect of critical annealing on the microstructure and properties of Fe-11Mn-3Al-2Si-0.3C medium manganese steel and its mechanism [D]. Qinhuangdao: Yanshan University, 2021
25 刘胜杰. 临界退火对Fe-11Mn-3Al-2Si-0.3C中锰钢组织性能影响及作用机理研究 [D]. 秦皇岛: 燕山大学, 2021
26 Miller R L. A rapid X-ray method for the determination of retained austenite [J]. Trans. Am. Soc. Met., 1964, 57: 892
27 Krauss G. Solidification, segregation, and banding in carbon and alloy steels [J]. Metall. Mater. Trans., 2003, 34B: 781
28 Hu B J, Zheng Q Y, Lu Y, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties [J]. Acta Metall. Sin., 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
28 胡宝佳, 郑沁园, 路 轶 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响 [J]. 金属学报, 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
29 Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions [J]. Mater. Sci. Eng., 2018, A729: 496
30 Lee S, De Cooman B C. Tensile behavior of intercritically annealed 10 pct Mn multi-phase Steel [J]. Metall. Mater. Trans., 2014, 45A: 709
31 Lee S, De Cooman B C. Influence of intra-granular ferrite on the tensile behavior of intercritically annealed 12 pct Mn TWIP + TRIP steel [J]. Metall. Mater. Trans., 2015, 46A: 1012
32 Li S C, Guo C Y, Hao L L, et al. In-situ EBSD study of deformation behaviour of 600  MPa grade dual phase steel during uniaxial tensile tests [J]. Mater. Sci. Eng., 2019, A759: 624
33 Alharbi K, Ghadbeigi H, Efthymiadis P, et al. Damage in dual phase steel DP1000 investigated using digital image correlation and microstructure simulation [J]. Modell. Simul. Mater. Sci. Eng., 2015, 23: 085005
34 Lee S, De Cooman B C. Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel [J]. Metall. Mater. Trans., 2014, 45A: 6039
35 Sohn S S, Choi K, Kwak J H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms [J]. Acta Mater., 2014, 78: 181
36 Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
37 Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
38 Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
doi: 10.1126/science.aal2766 pmid: 28280201
[1] 贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
[2] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[3] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[4] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[5] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[8] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[9] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[10] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[11] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[12] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[13] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[14] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[15] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.