|
|
冷轧中锰钢的再结晶调控及其对力学性能的影响 |
胡宝佳1,2, 郑沁园1,2, 路轶1,2, 贾春妮1, 梁田3, 郑成武1( ), 李殿中1( ) |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties |
HU Baojia1,2, ZHENG Qinyuan1,2, LU Yi1,2, JIA Chunni1, LIANG Tian3, ZHENG Chengwu1( ), LI Dianzhong1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
Baojia HU,
Qinyuan ZHENG,
Yi LU,
Chunni JIA,
Tian LIANG,
Chengwu ZHENG,
Dianzhong LI.
Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. Acta Metall Sin, 2024, 60(2): 189-200.
1 |
Yang D P, Du P J, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75: 205
doi: 10.1016/j.jmst.2020.10.032
|
2 |
Huang L, Deng X T, Liu J, et al. Relationship between retained austenite stability and cryogenic impact toughness in 0.12C-3.0Mn low carbon medium manganese steel [J]. Acta Metall. Sin., 2017, 53: 316
|
2 |
黄 龙, 邓想涛, 刘 佳 等. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系 [J]. 金属学报, 2017, 53: 316
|
3 |
Chen S, Hu J, Shan L Y, et al. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels [J]. Mater. Sci. Eng., 2021, A803: 140706
|
4 |
Hu B J, Zheng Q Y, Jia C N, et al. Improvement of mechanical properties of a medium-Mn TRIP steel by precursor microstructure control [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1068
doi: 10.1007/s40195-021-01355-6
|
5 |
Cai M H, Huang H S, Pan H J, et al. Microstructure and tensile properties of a Nb-Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 665
doi: 10.1007/s40195-017-0597-0
|
6 |
Lu Q, Lai Q Q, Chai Z S, et al. Revolutionizing car body manufacturing using a unified steel metallurgy concept [J]. Sci. Adv., 2021, 7: eabk0176
doi: 10.1126/sciadv.abk0176
|
7 |
Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling [J]. Acta Metall. Sin., 2018, 54: 859
|
7 |
阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究 [J]. 金属学报, 2018, 54: 859
|
8 |
Cai M H, Huang H S, Su J H, et al. Enhanced tensile properties of a reversion annealed 6.5Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction [J]. J. Mater. Sci. Technol., 2018, 34: 1428
doi: 10.1016/j.jmst.2017.12.008
|
9 |
Hu J, Du L X, Xu W, et al. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite [J]. Mater. Charact., 2018, 136: 20
doi: 10.1016/j.matchar.2017.11.058
|
10 |
Liang J H, Zhao Z Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix [J]. Mater. Sci. Eng., 2018, A711: 175
|
11 |
Yan S, Liu X H, Liang T S, et al. The effects of the initial microstructure on microstructural evolution, mechanical properties and reversed austenite stability of intercritically annealed Fe-6.1Mn-1.5Si-0.12C steel [J]. Mater. Sci. Eng., 2018, A712: 332
|
12 |
Li Y, Li W, Min N, et al. Mechanical response of a medium manganese steel with encapsulated austenite [J]. Scr. Mater., 2020, 178: 211
doi: 10.1016/j.scriptamat.2019.11.033
|
13 |
Luo L B, Li W, Liu S L, et al. Effect of intermediate temperature annealing on the stability of retained austenite and mechanical properties of medium Mn-TRIP steel [J]. Mater. Sci. Eng., 2019, A742: 69
|
14 |
LI X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing [J]. Scr. Mater., 2018, 154: 30
doi: 10.1016/j.scriptamat.2018.05.016
|
15 |
Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel [J]. Mater. Sci. Eng., 2017, A698: 126
|
16 |
Shen G H, Hu B, Yang Z B, et al. Influence of tempering temperature on mechanical properties and microstructures of high-Al-contained medium Mn steel having δ-ferrite [J]. Acta Metall. Sin., 2022, 58: 165
|
16 |
沈国慧, 胡 斌, 杨占兵 等. 回火温度对含δ铁素体高铝中锰钢力学性能和微观组织的影响 [J]. 金属学报, 2022, 58: 165
doi: 10.11900/0412.1961.2021.00089
|
17 |
Zhou C, Ye Q B, Hu J, et al. Ultra-high-strength multi-alloyed steel with enhanced cryogenic toughness using thermally stable retained austenite [J]. Mater. Sci. Eng., 2022, A831: 142356
|
18 |
Hui W J, Shao C W, Zhang Y J, et al. Microstructure and mechanical properties of medium Mn steel containing 3%Al processed by warm rolling [J]. Mater. Sci. Eng., 2017, A707: 501
|
19 |
Cheng P, Hu B, Liu S L, et al. Influence of retained austenite and Cu precipitates on the mechanical properties of a cold-rolled and intercritically annealed medium Mn steel [J]. Mater. Sci. Eng., 2019, A746: 41
|
20 |
Wei X, Zhang X L, Cai M H, et al. Stress-state-dependent deformation and fracture behaviors in a cold-rolled 7Mn steel [J]. Mater. Sci. Eng., 2022, A831: 142102
|
21 |
Zhang Y, Ding H. Ultrafine also can be ductile: On the essence of Lüders band elongation in ultrafine-grained medium manganese steel [J]. Mater. Sci. Eng., 2018, A733: 220
|
22 |
Hu B, Tu X, Wang Y, et al. Recent progress and future research prospects on the plastic instability of medium-Mn steels: A review [J]. Chin. J. Eng., 2020, 42: 48
|
22 |
胡 斌, 屠 鑫, 王 玉 等. 中锰钢塑性失稳现象的研究进展及未来研究展望 [J]. 工程科学学报, 2020, 42: 48
|
23 |
Yan S, Li T L, Liang T S, et al. By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously [J]. Mater. Sci. Eng., 2019, A758: 79
|
24 |
Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands [J]. Mater. Sci. Eng., 2017, A679: 230
|
25 |
Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system [J]. J. Alloys Compd., 2017, 691: 51
doi: 10.1016/j.jallcom.2016.08.093
|
26 |
Wang H S, Zhang Y X, Yuan G, et al. Significance of cold rolling reduction on Lüders band formation and mechanical behavior in cold-rolled intercritically annealed medium-Mn steel [J]. Mater. Sci. Eng., 2018, A737: 176
|
27 |
Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, A707: 270
|
28 |
Han J, Kang S H, Lee S J, et al. Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties [J]. J. Alloys Compd., 2016, 681: 580
doi: 10.1016/j.jallcom.2016.04.014
|
29 |
Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
|
30 |
Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels [J]. Mater. Des., 2015, 83: 42
doi: 10.1016/j.matdes.2015.05.085
|
31 |
Wan X H, Liu G, Yang Z G, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure [J]. Scr. Mater., 2021, 198: 113819
doi: 10.1016/j.scriptamat.2021.113819
|
32 |
Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel [J]. Metall. Mater. Trans., 2018, 49A: 4404
|
33 |
Kim M T, Park T M, Baik K H, et al. Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels [J]. Mater. Sci. Eng., 2019, A752: 43
|
34 |
Zhang X L, Yan J H, Liu T, et al. Microstructural evolution and mechanical behavior of a novel heterogeneous medium Mn cold-rolled steel [J]. Mater. Sci. Eng., 2021, A800: 140344
|
35 |
Wan X H, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium Mn steels [J]. Scr. Mater., 2019, 166: 68
doi: 10.1016/j.scriptamat.2019.03.015
|
36 |
Hu B J, Zheng C W, Zheng Q Y, et al. Ultra-fine heterogeneous microstructure enables high strength-ductility in a cold-rolled medium Mn steel [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1712
doi: 10.1007/s40195-022-01414-6
|
37 |
Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel [J]. Mater. Sci. Eng., 2010, A527: 3442
|
38 |
Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel [J]. Metall. Mater. Trans., 2015, 46A: 2356
|
39 |
De Cooman B C, Lee S J, Shin S, et al. Combined intercritical annealing and Q&P processing of medium Mn steel [J]. Metall. Mater. Trans., 2017, 48A: 39
|
40 |
Hu B, Shen X, Gao Q Y, et al. Yielding behavior of triplex medium Mn steel alternated with cooling strategies altering martensite/ferrite interfacial feature [J]. J. Mater. Sci. Technol., 2022, 126: 60
doi: 0.1016/j.jmst.2022.04.003
|
41 |
Jeong M S, Park T M, Choi S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure [J]. Scr. Mater., 2021, 190: 16
doi: 10.1016/j.scriptamat.2020.08.022
|
42 |
Lai Q Q, Gouné M, Perlade A, et al. Mechanism of austenite formation from spheroidized microstructure in an intermediate Fe-0.1C-3.5Mn steel [J]. Metall. Mater. Trans., 2016, 47A: 3375
|
43 |
Chen L S, Zhang J Y, Tian Y Q, et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P Steels [J]. Acta Metall. Sin., 2015, 51: 527
|
43 |
陈连生, 张健杨, 田亚强 等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响 [J]. 金属学报, 2015, 51: 527
|
44 |
Rao P M, Sarma V S, Sankaran S. Microstructure and mechanical properties of V-Nb microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing [J]. Metall. Mater. Trans., 2017, 48A: 1176
|
45 |
Hu J, Du L X, Sun G S, et al. The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel [J]. Scr. Mater., 2015, 104: 87
doi: 10.1016/j.scriptamat.2015.04.009
|
46 |
Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
|
46 |
邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
|
47 |
Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
doi: 10.1016/j.actamat.2019.07.043
|
48 |
Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing [J]. J. Mater. Sci., 2019, 54: 6565
doi: 10.1007/s10853-018-03291-w
|
49 |
Ma J W, Liu H T, Lu Q, et al. Transformation kinetics of retained austenite in the tensile Lüders strain range in medium Mn steel [J]. Scr. Mater., 2019, 169: 1
doi: 10.1016/j.scriptamat.2019.04.044
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|