Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1035-1048    DOI: 10.11900/0412.1961.2023.00249
  研究论文 本期目录 | 过刊浏览 |
Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响
谢昂1,2, 陈胜虎1(), 姜海昌1, 戎利建1
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Effects of Nb Content and Homogenization Treatment on the Microstructure and Mechanical Properties of Cast Austenitic Stainless Steel
XIE Ang1,2, CHEN Shenghu1(), JIANG Haichang1, RONG Lijian1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
Ang XIE, Shenghu CHEN, Haichang JIANG, Lijian RONG. Effects of Nb Content and Homogenization Treatment on the Microstructure and Mechanical Properties of Cast Austenitic Stainless Steel[J]. Acta Metall Sin, 2025, 61(7): 1035-1048.

全文: PDF(5690 KB)   HTML
摘要: 

奥氏体不锈钢中添加Nb会造成铸态组织中出现大尺寸初生NbC,不利于后续二次NbC的析出控制,是制约含Nb奥氏体不锈钢发展的重要因素。本工作采用OM、SEM、TEM和单轴拉伸实验等研究了Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响。结果表明,Nb含量的变化改变了晶界初生NbC和M23C6碳化物的析出行为,未添加Nb的合金在晶界处析出了连续分布的M23C6碳化物;Nb含量为0.30% (质量分数)时,形成了初生NbC +奥氏体的共晶组织,但晶界仍析出M23C6碳化物;Nb含量进一步提高到0.90%可完全抑制M23C6析出,但共晶组织数量显著增加。随着Nb含量增加到0.90%,合金的屈服强度提高,这是由于M23C6析出被抑制而使Cr元素固溶强化、Nb元素固溶强化、晶粒细化带来的细晶强化以及二次NbC的沉淀强化作用提高。然而,初生NbC与奥氏体间较差的变形协调性易诱发微裂纹的萌生,裂纹沿网状分布的NbC快速扩展造成了沟壑状的脆性断裂,显著降低了合金延伸率。1250 ℃均质化处理后,初生NbC由长棒状转变为球状或椭球状,提高了NbC与奥氏体界面处微裂纹形成所需的临界应力,抑制了微裂纹的萌生;同时初生NbC由网状分布转变为断续分布,避免了微裂纹沿初生NbC的扩展,在基本不影响奥氏体不锈钢强度的基础上,大幅度提高了延伸率。

关键词 奥氏体不锈钢Nb含量均质化处理碳化物析出力学性能    
Abstract

The corrosion and mechanical properties of austenitic stainless steels can be enhanced considerably by adding Nb. Newly developed Nb-stabilized austenitic stainless steels, such as 347HFG, 316Nb, TP310HCb, NF709, and HT-UPS, exemplify this advancement. The required Nb content varies across these steels. Prior research has indicated that in the as-cast microstructure of these steels, coarse and unevenly distributed primary NbC often forms, adversely affecting their mechanical and corrosion properties. Furthermore, this coarse primary NbC depletes the solid solution of Nb, which is counterproductive for fine secondary NbC precipitation. Notably, modifying the morphology and size of primary NbC through hot working and heat treatment is challenging. To enhance the microstructure and mechanical properties of Nb-stabilized austenitic stainless steel, this study investigated the effects of Nb content and homogenization treatment on these steels. The microstructure and tensile properties of cast austenitic stainless steel were analyzed using OM, SEM, TEM, and tensile test. The findings reveal that varying Nb content influences the precipitation of primary NbC and M23C6 carbides. In Nb-free steel, M23C6 carbides precipitate continuously at grain boundaries. This precipitation still occurs in steel with 0.30%Nb (mass fraction), alongside the formation of NbC + γ eutectic structures. Increasing Nb content to 0.90% can suppress M23C6 carbide precipitation, although the eutectic structures become more prevalent. A notable enhancement in yield strength accompanies an increase in Nb content to 0.90%. This improvement is attributed to the solid solution strengthening by Cr (due to suppressed M23C6 carbides) and Nb, grain boundary strengthening from refined grain sizes, and precipitation strengthening by secondary NbC. However, microcracks are easily nucleated at primary NbC/γ interface under plastic deformation, leading to rapid crack propagation along primary NbC networks and resulting in trench-like brittle fractures. This mechanism significantly reduces elongation. Post-homogenization treatment at 1250 oC alters the primary NbC morphology from rod-like to spherical/ellipsoid. This change increases the critical stress required for microcrack nucleation at NbC/γ interfaces, thereby inhibiting microcrack initiation. Additionally, the primary NbC networks transform from continuous to discontinuous distributions, impeding microcrack propagation. Consequently, this treatment significantly enhances elongation without compromising strength.

Key wordsaustenitic stainless steel    Nb content    homogenization treatment    carbide precipitation    mechanical property
收稿日期: 2023-06-07     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51871218);中核集团领创科研项目
通讯作者: 陈胜虎,chensh@imr.ac.cn,主要从事核用结构材料的研发
作者简介: 谢 昂,男,1997年生,博士
图1  不同Nb含量奥氏体不锈钢铸态组织的OM像和SEM像
图2  0Nb和9Nb奥氏体不锈钢铸态组织的TEM像、EDS面扫描图和选区电子衍射(SAED)花样
图3  不同Nb含量和均质化处理态奥氏体不锈钢的拉伸性能随温度的变化曲线
图4  不同Nb含量奥氏体不锈钢室温拉伸断口形貌的SEM像
图5  不同Nb含量奥氏体不锈钢100 ℃拉伸断口形貌的SEM像
图6  不同Nb含量奥氏体不锈钢550 ℃拉伸断口形貌的SEM像
图7  0Nb奥氏体不锈钢在不同温度下拉伸断口纵剖面的SEM像
图8  9Nb奥氏体不锈钢在室温和550 ℃下拉伸断口纵剖面的SEM像
图9  9Nb奥氏体不锈钢经不同温度拉伸断裂后的TEM像和SAED花样
图10  9Nb奥氏体不锈钢经均质化处理后微观组织的OM像和SEM像
图11  均质化处理后9Nb奥氏体不锈钢在室温和550 ℃下拉伸断口纵剖面的SEM像
图12  不同Nb含量和均质化处理态奥氏体不锈钢经不同温度拉伸断裂后形变诱发马氏体的体积分数
图13  9Nb奥氏体不锈钢分别经10%应变的室温拉伸变形和550 ℃拉伸断裂后的高角环形暗场(HAADF)像和SAED花样
1 Lv X L, Chen S H, Wang Q Y, et al. Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel [J]. Metals, 2022, 12: 1421
2 Wu X Q, Rong L J, Tan J B, et al. Research advance on liquid lead-bismuth eutectic corrosion resistant Si enhanced ferritic/martensitic and austenitic stainless steels [J]. Acta Metall. Sin., 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
2 吴欣强, 戎利建, 谭季波 等. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展 [J]. 金属学报, 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
3 Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
4 Korzhavyi P A, Sandström R. First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength [J]. Mater. Sci. Eng., 2015, A626: 213
5 Yoo O, Oh Y J, Lee B S, et al. The effect of the carbon and nitrogen contents on the fracture toughness of Type 347 austenitic stainless steels [J]. Mater. Sci. Eng., 2005, A405: 147
6 Aydoğdu G H, Aydinol M K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel [J]. Corros. Sci., 2006, 48: 3565
7 Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L (N) during creep tests at 550 and 600 oC up to 10 years [J]. J. Nucl. Mater., 2007, 362: 132
8 Vach M, Kuníková T, Dománková M, et al. Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 oC [J]. Mater. Charact., 2008, 59: 1792
9 Solenthaler C, Ramesh M, Uggowitzer P J, et al. Precipitation strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb(C, N) formed upon a short-term hardening heat treatment [J]. Mater. Sci. Eng., 2015, A647: 294
10 Erneman J, Schwind M, Andrén H O, et al. The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing [J]. Acta Mater., 2006, 54: 67
11 Kim B K, Tan L, Xu C, et al. Microstructural evolution of NF709 (20Cr-25Ni-1.5MoNbTiN) under neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 229
12 Xu C, Zhang X, Chen Y R, et al. In-situ high-energy X-ray characterization of neutron irradiated HT-UPS stainless steel under tensile deformation [J]. Acta Mater., 2018, 156: 330
13 Jolly W, Toffolon-Masclet C, Joubert J M, et al. In situ monitoring of isothermal phase transformation in two Nb stabilized austenitic stainless steels (316Nb) by neutron diffraction [J]. J. Alloys Compd., 2016, 688: 695
14 Zhang J, Korzhavyi P A, He J J. Investigation on elastic and thermodynamic properties of Fe25Cr20NiMnNb austenitic stainless steel at high temperatures from first principles [J]. Comput. Mater. Sci., 2020, 185: 109973
15 Zhang Y H, Li M, Godlewski L A, et al. Creep behavior at 1273 K (1000 oC) in Nb-bearing austenitic heat-resistant cast steels developed for exhaust component applications [J]. Metall. Mater. Trans., 2016, 47A: 3289
16 Yoon J H, Yoon E P, Lee B S. Correlation of chemistry, microstructure and ductile fracture behaviours of niobium-stabilized austenitic stainless steel at elevated temperature [J]. Scr. Mater., 2007, 57: 25
17 Zhang X, Li D Z, Li Y Y, et al. The influence of niobium on the plastic deformation behaviors of 310s austenitic stainless steel weld metals at different temperatures [J]. Mater. Sci. Eng., 2019, A743: 648
18 Wu Y, Xie A, Chen S H, et al. Corrosion behavior of NbC and its effect on corrosion layer formation in liquid lead-bismuth eutectic of Nb-containing austenitic stainless steel [J]. Acta Metall Sin., 2025, 61: 287
doi: 10.11900/0412.1961.2022.00650
18 吴 炀, 谢 昂, 陈胜虎 等. 含铌奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响 [J]. 金属学报, 2025, 61: 287
19 Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
20 Talonen J, Aspegren P, Hänninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels [J]. Mater. Sci. Technol., 2004, 20: 1506
21 Sohrabi M J, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: A review [J]. Arch. Civ. Mech. Eng., 2020, 20: 124
22 de Bellefon G M, van Duysen J C, Sridharan K. Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts [J]. J. Nucl. Mater., 2017, 492: 227
23 Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Mater. Trans., 1975, 6A: 791
24 Xie A, Chen S H, Rong L J. Dynamic strain aging induced by synergistic effects of deformation-induced martensite and deformation twins in Fe-Cr-Ni metastable austenitic stainless steel [J]. Metall. Mater. Trans., 2023, 54A: 4592
25 Mo W L, Zhang X, Lu S P, et al. Effect of Nb content on microstructure, welding defects and mechanical properties of NiCrFe-7 weld metal [J]. Acta Metall. Sin., 2015, 51: 230
doi: 10.11900/0412.1961.2014.00288
25 莫文林, 张 旭, 陆善平 等. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响 [J]. 金属学报, 2015, 51: 230
doi: 10.11900/0412.1961.2014.00288
26 Attarian M, Karimi Taheri A, Varahram N, et al. Microstructure and segregation behaviour of directionally solidified tungsten bearing 25Cr-35Ni-Nb heat-resistant stainless steels [J]. Int. J. Cast Met. Res., 2017, 30: 112
27 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
28 Yong Q L. Second Phases in Structural Steel [M]. Beijing: Metallurgical Industry Press, 2006: 153
28 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 153
29 Nordberg H, Aromsson B. Solubility of niobium carbide in austenite [J]. J. Iron Steel Inst., 1968, 206: 1263
30 Wang Q Y, Chen S H, Rong L J. δ-ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
31 Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
32 Wei L M, Hao W X, Cheng Y, et al. Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy [J]. Mater. Sci. Eng., 2018, A737: 40
33 Zhang Y T, Lan L Y, Zhao Y. Effect of precipitated phases on the mechanical properties and fracture mechanisms of Inconel 718 alloy [J]. Mater. Sci. Eng., 2023, A864: 144598
[1] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[2] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[3] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[4] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[5] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[6] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[7] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[8] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[9] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[10] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[11] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[12] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[13] 吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
[14] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[15] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.