|
|
Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响 |
谢昂1,2, 陈胜虎1( ), 姜海昌1, 戎利建1 |
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Effects of Nb Content and Homogenization Treatment on the Microstructure and Mechanical Properties of Cast Austenitic Stainless Steel |
XIE Ang1,2, CHEN Shenghu1( ), JIANG Haichang1, RONG Lijian1 |
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
Ang XIE,
Shenghu CHEN,
Haichang JIANG,
Lijian RONG.
Effects of Nb Content and Homogenization Treatment on the Microstructure and Mechanical Properties of Cast Austenitic Stainless Steel[J]. Acta Metall Sin, 2025, 61(7): 1035-1048.
1 |
Lv X L, Chen S H, Wang Q Y, et al. Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel [J]. Metals, 2022, 12: 1421
|
2 |
Wu X Q, Rong L J, Tan J B, et al. Research advance on liquid lead-bismuth eutectic corrosion resistant Si enhanced ferritic/martensitic and austenitic stainless steels [J]. Acta Metall. Sin., 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
|
2 |
吴欣强, 戎利建, 谭季波 等. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展 [J]. 金属学报, 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
|
3 |
Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
|
4 |
Korzhavyi P A, Sandström R. First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength [J]. Mater. Sci. Eng., 2015, A626: 213
|
5 |
Yoo O, Oh Y J, Lee B S, et al. The effect of the carbon and nitrogen contents on the fracture toughness of Type 347 austenitic stainless steels [J]. Mater. Sci. Eng., 2005, A405: 147
|
6 |
Aydoğdu G H, Aydinol M K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel [J]. Corros. Sci., 2006, 48: 3565
|
7 |
Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L (N) during creep tests at 550 and 600 oC up to 10 years [J]. J. Nucl. Mater., 2007, 362: 132
|
8 |
Vach M, Kuníková T, Dománková M, et al. Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 oC [J]. Mater. Charact., 2008, 59: 1792
|
9 |
Solenthaler C, Ramesh M, Uggowitzer P J, et al. Precipitation strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb(C, N) formed upon a short-term hardening heat treatment [J]. Mater. Sci. Eng., 2015, A647: 294
|
10 |
Erneman J, Schwind M, Andrén H O, et al. The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing [J]. Acta Mater., 2006, 54: 67
|
11 |
Kim B K, Tan L, Xu C, et al. Microstructural evolution of NF709 (20Cr-25Ni-1.5MoNbTiN) under neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 229
|
12 |
Xu C, Zhang X, Chen Y R, et al. In-situ high-energy X-ray characterization of neutron irradiated HT-UPS stainless steel under tensile deformation [J]. Acta Mater., 2018, 156: 330
|
13 |
Jolly W, Toffolon-Masclet C, Joubert J M, et al. In situ monitoring of isothermal phase transformation in two Nb stabilized austenitic stainless steels (316Nb) by neutron diffraction [J]. J. Alloys Compd., 2016, 688: 695
|
14 |
Zhang J, Korzhavyi P A, He J J. Investigation on elastic and thermodynamic properties of Fe25Cr20NiMnNb austenitic stainless steel at high temperatures from first principles [J]. Comput. Mater. Sci., 2020, 185: 109973
|
15 |
Zhang Y H, Li M, Godlewski L A, et al. Creep behavior at 1273 K (1000 oC) in Nb-bearing austenitic heat-resistant cast steels developed for exhaust component applications [J]. Metall. Mater. Trans., 2016, 47A: 3289
|
16 |
Yoon J H, Yoon E P, Lee B S. Correlation of chemistry, microstructure and ductile fracture behaviours of niobium-stabilized austenitic stainless steel at elevated temperature [J]. Scr. Mater., 2007, 57: 25
|
17 |
Zhang X, Li D Z, Li Y Y, et al. The influence of niobium on the plastic deformation behaviors of 310s austenitic stainless steel weld metals at different temperatures [J]. Mater. Sci. Eng., 2019, A743: 648
|
18 |
Wu Y, Xie A, Chen S H, et al. Corrosion behavior of NbC and its effect on corrosion layer formation in liquid lead-bismuth eutectic of Nb-containing austenitic stainless steel [J]. Acta Metall Sin., 2025, 61: 287
doi: 10.11900/0412.1961.2022.00650
|
18 |
吴 炀, 谢 昂, 陈胜虎 等. 含铌奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响 [J]. 金属学报, 2025, 61: 287
|
19 |
Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
|
20 |
Talonen J, Aspegren P, Hänninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels [J]. Mater. Sci. Technol., 2004, 20: 1506
|
21 |
Sohrabi M J, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: A review [J]. Arch. Civ. Mech. Eng., 2020, 20: 124
|
22 |
de Bellefon G M, van Duysen J C, Sridharan K. Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts [J]. J. Nucl. Mater., 2017, 492: 227
|
23 |
Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Mater. Trans., 1975, 6A: 791
|
24 |
Xie A, Chen S H, Rong L J. Dynamic strain aging induced by synergistic effects of deformation-induced martensite and deformation twins in Fe-Cr-Ni metastable austenitic stainless steel [J]. Metall. Mater. Trans., 2023, 54A: 4592
|
25 |
Mo W L, Zhang X, Lu S P, et al. Effect of Nb content on microstructure, welding defects and mechanical properties of NiCrFe-7 weld metal [J]. Acta Metall. Sin., 2015, 51: 230
doi: 10.11900/0412.1961.2014.00288
|
25 |
莫文林, 张 旭, 陆善平 等. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响 [J]. 金属学报, 2015, 51: 230
doi: 10.11900/0412.1961.2014.00288
|
26 |
Attarian M, Karimi Taheri A, Varahram N, et al. Microstructure and segregation behaviour of directionally solidified tungsten bearing 25Cr-35Ni-Nb heat-resistant stainless steels [J]. Int. J. Cast Met. Res., 2017, 30: 112
|
27 |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
|
28 |
Yong Q L. Second Phases in Structural Steel [M]. Beijing: Metallurgical Industry Press, 2006: 153
|
28 |
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 153
|
29 |
Nordberg H, Aromsson B. Solubility of niobium carbide in austenite [J]. J. Iron Steel Inst., 1968, 206: 1263
|
30 |
Wang Q Y, Chen S H, Rong L J. δ-ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
|
31 |
Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
|
32 |
Wei L M, Hao W X, Cheng Y, et al. Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy [J]. Mater. Sci. Eng., 2018, A737: 40
|
33 |
Zhang Y T, Lan L Y, Zhao Y. Effect of precipitated phases on the mechanical properties and fracture mechanisms of Inconel 718 alloy [J]. Mater. Sci. Eng., 2023, A864: 144598
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|