|
|
fcc和bcc钢板在超高速撞击下的微观组织差异 |
孙欢腾, 马运柱, 蔡青山( ), 王健宁, 段有腾, 张梦祥 |
中南大学 粉末冶金研究院 长沙 410083 |
|
Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact |
SUN Huanteng, MA Yunzhu, CAI Qingshan( ), WANG Jianning, DUAN Youteng, ZHANG Mengxiang |
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China |
引用本文:
孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fcc和bcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
Huanteng SUN,
Yunzhu MA,
Qingshan CAI,
Jianning WANG,
Youteng DUAN,
Mengxiang ZHANG.
Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. Acta Metall Sin, 2025, 61(7): 1011-1023.
1 |
Liang H H, Li G. Study on microstructure and properties of heat treatment Q345 steel [J]. Foundry Technol., 2018, 39: 2087
|
1 |
梁慧慧, 李 光. Q345钢热处理组织与性能研究 [J]. 铸造技术, 2018, 39: 2087
|
2 |
Lin W, Zhang X W, Zhao Y K, et al. Continuous cooling transformation curve of undercooling austenite about Q345 steel [J]. Mater. Sci. Technol., 2009, 17: 247
|
2 |
林 武, 张希旺, 赵延阔 等. Q345钢奥氏体连续冷却转变曲线(CCT图) [J]. 材料科学与工艺, 2009, 17: 247
|
3 |
Zheng S G, Yan J, Gong W W. Hypervelocity impact failure modes of typical spacecraft components [J]. Space Int., 2022, (4): 29
|
3 |
郑世贵, 闫 军, 宫伟伟. 航天器典型部件超高速撞击失效模式 [J]. 国际太空, 2022, (4): 29
|
4 |
Chen J, Chen Y J, Yuan B H, et al. Experimental investigation on penetration behavior of reactive fragment against steel plates [J]. Sci. Technol. Eng., 2014, 14(35): 52
|
4 |
陈 进, 陈元建, 袁宝慧 等. 活性破片对钢板侵彻性能的实验研究 [J]. 科学技术与工程, 2014, 14(35): 52
|
5 |
Yu T X, Zhu L, Xu J. Progress in structural impact dynamics during 2010-2020 [J]. Explos. Shock Waves, 2021, 41(12): 121401
|
5 |
余同希, 朱 凌, 许 骏. 结构冲击动力学进展(2010-2020) [J]. 爆炸与冲击, 2021, 41(12): 121401
|
6 |
Al-Fadhalah K J. Strain-induced martensite formation and recrystallization behavior in 304 stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 1697
|
7 |
Okayasu M, Fukui H, Ohfuji H, et al. Strain-induced martensite formation in austenitic stainless steel [J]. J. Mater. Sci., 2013, 48: 6157
|
8 |
Zhang L M, Li Z X, Hu J X, et al. Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion [J]. Tribol. Int., 2021, 155: 106752
|
9 |
Zerouki M, Ouali M O, Benabou L. Metallurgical phase transformation and behavior of steels under impact loading [J]. Metall. Mater. Trans., 2020, 51A: 252
|
10 |
Luo C, Yuan H. Measurement and modeling of deformation-induced martensitic transformation in a metastable austenitic stainless steel under cyclic loadings [J]. Acta Mater., 2022, 238: 118202
|
11 |
Wang N, Chen Y N, Zhao Q Y, et al. Effect of strain rate on the strain partitioning behavior of ferrite/bainite in X80 pipeline steel [J]. Acta Metall. Sin., 2023, 59: 1299
doi: 10.11900/0412.1961.2021.00412
|
11 |
王 楠, 陈永楠, 赵秦阳 等. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响 [J]. 金属学报, 2023, 59: 1299
|
12 |
Shen Y F, Li X X, Xue W Y, et al. Changes in martensite fraction of 304SS in tensile deformation [J] J. Northeast. Univ. (Nat. Sci.), 2012, 33: 1125
|
12 |
申勇峰, 李晓旭, 薛文颖 等. 304不锈钢拉伸变形过程中的马氏体相变 [J]. 东北大学学报(自然科学版), 2012, 33: 1125
|
13 |
Xu Y, Song R B, Wang B N, et al. Study on deformation induced α′-martensitic transformation and fracture mechanism of 304HC stainless steel wire [J]. J. Plast. Eng., 2015, 22(4): 154
|
13 |
徐 杨, 宋仁伯, 王宾宁 等. 304HC不锈钢钢丝形变诱导α′-马氏体相变及断裂机制 [J]. 塑性工程学报, 2015, 22(4): 154
|
14 |
Yang F, Liang J, Yang R X, et al. Strain-induced martensite and its influence in stamping of 304 stainless steel sheet [J]. J. Mech. Eng., 2021, 57(8): 175
doi: 10.3901/JME.2021.08.175
|
14 |
杨 钒, 梁 君, 杨瑞霞. 304不锈钢板材冲压成形中应变诱发马氏体及其影响 [J]. 机械工程学报, 2021, 57(8): 175
|
15 |
Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2012, A552: 514
|
16 |
Liu Y, Xu H Z, Wang X F, et al. Progress in dynamic responses and microstructure evolution of the additive manufactured alloys under impact load [J]. Chin. J. High Pressure Phys., 2021, 35(4): 15
|
16 |
刘 洋, 徐怀忠, 汪小锋 等. 冲击载荷下增材制造金属材料的动态响应及微观结构演化研究进展 [J]. 高压物理学报, 2021, 35(4): 15
|
17 |
Singh P K, Kumar M. Hypervelocity impact behavior of projectile penetration on spacecraft structure: A review [J]. Mater. Today: Proc., 2022, 62: 3167
|
18 |
Ren S Y, Zhang Q M, Wu Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. Int. J. Impact Eng., 2019, 130: 124
|
19 |
Ni C H, Wang F C, Xu Q, et al. Deformation twinning in BCC iron under hypervelocity impact [J]. Trans. Beijing Inst. Technol., 2011, 31: 984
|
19 |
倪川皓, 王富耻, 徐 强 等. 超高速碰撞下体心立方纯铁的变形孪晶 [J]. 北京理工大学学报, 2011, 31: 984
|
20 |
Chen G X, Sang B G, Liu H W, et al. Hot deformation characteristics and dynamic recrystallization behavior of H13 steel at high temperature [J]. J. Plast. Eng., 2022, 29(6): 193
|
20 |
陈国鑫, 桑宝光, 刘宏伟 等. H13钢高温热变形特征与动态再结晶行为 [J]. 塑性工程学报, 2022, 29(6): 193
doi: 10.3969/j.issn.1007-2012.2022.06.024
|
21 |
Esquivel E V, Murr L E. Deformation effects in shocked metals and alloys [J]. Mater. Sci. Technol., 2006, 22: 438
|
22 |
Rodríguez-Martínez J A, Rusinek A, Pesci R. Experimental survey on the behaviour of AISI 304 steel sheets subjected to perforation [J]. Thin-Walled Struct., 2010, 48: 966
|
23 |
Liu M T, Guo Z L, Fan C, et al. Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external high-strain-rate loading [J]. Int. J. Solids Struct., 2016, 97-98: 336
|
24 |
Tiamiyu A A, Szpunar J A, Odeshi A G. Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: Grain size effect [J]. Mater. Charact., 2019, 154(20): 7
|
25 |
Gussev M N, Busby J T, Byun T S, et al. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations [J]. Mater. Sci. Eng., 2013, A588: 299
|
26 |
Liu C Y, Li D Z, Wei Y H, et al. Microstructure and property of TWIP steel under high speed dynamic test [J]. J. Iron Steel Res., 2010, 22(6): 48
|
26 |
刘春月, 李大赵, 卫英慧 等. 高速冲击条件下TWIP钢组织和性能的研究 [J]. 钢铁研究学报, 2010, 22(6): 48
|
27 |
Dai H X, Wang L, Xu X, et al. Deformation behavior of near-β Ti-5553 alloy under the impact of light gas gun [J]. Rare Met. Mater. Eng., 2018, 47: 657
|
27 |
代华湘, 王 琳, 徐 欣 等. Ti-5553合金在轻气炮冲击下的变形行为 [J]. 稀有金属材料与工程, 2018, 47: 657
|
28 |
Wang H H, Shi Z M, Tong Z. Surface hardening and numerical simulation on AISI304 stainless steel plates by explosive impact treatment [J]. Surf. Technol., 2018, 47(11): 54
|
28 |
王呼和, 史志铭, 佟 铮. 爆炸加载下AISI304不锈钢板表面硬化和数值模拟 [J]. 表面技术, 2018, 47(11): 54
|
29 |
Dougherty L M, Cerreta E K, Pfeif E A, et al. The impact of peak shock stress on the microstructure and shear behavior of 1018 steel [J]. Acta Mater., 2007, 55: 6356
|
30 |
Eskandari M, Szpunar J A. Microstructure and texture of high manganese steel subjected to dynamic impact loading [J]. Mater. Sci. Technol., 2020, 36: 1044
|
31 |
Zhang N B, Liu Q, Yang K, et al. Effects of shock-induced phase transition on spallation of a mild carbon steel [J]. Int. J. Mech. Sci., 2022, 213: 106858
|
32 |
Yang K, Li C, Zhao X J, et al. Impact-induced twinning and phase transition in a medium carbon steel [J]. J. Alloys Compd., 2021, 881: 160421
|
33 |
Wang S H, Hsiao W Y, Yang Y L, et al. Microstructural characterization and mechanical properties of duplex and super austenitic stainless steels under dynamic impact deformation [J]. J. Mater. Eng. Perform., 2021, 30: 8169
|
34 |
Chen A Y, Ruan H H, Wang J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel [J]. Acta Mater., 2011, 59: 3697
|
35 |
Rösner H, Boucharat N, Markmann J, et al. In situ transmission electron microscopic observations of deformation and fracture processes in nanocrystalline palladium and Pd90Au10 [J]. Mater. Sci. Eng., 2009, A525: 102
|
36 |
Quan G F, Cai L M. Mechanism of crack nucleation analysed by in situ observation on Mg-Al-Zn alloy [J]. Mater. Sci. Forum, 2007, 539-543: 1669
|
37 |
Xie J T, Wang Q J, Wang L Y. Dynamic recrystallization analysis on austenitic stainless steel 321 alloy at different strain rates [J]. Forg. Stamp. Technol., 2019, 44(6): 178
|
37 |
解婧陶, 王钦娟, 王璐银. 奥氏体不锈钢321合金不同应变速率下动态再结晶分析 [J]. 锻压技术, 2019, 44(6): 178
|
38 |
Xu Y B, Yang H J, Meyers A M. Application of EBSD in the investigation of the deformation microstructure induced during high-strain rate loading [J]. Chin. J. Mater. Res., 2009, 23: 561
|
38 |
徐永波, 阳华杰, Meyers A M. 背散射电子衍射在高应变率变形结构研究中的应用 [J]. 材料研究学报, 2009, 23: 561
|
39 |
Tiamiyu A A, Odeshi A G, Szpunar J A. Characterization of coarse and ultrafine-grained austenitic stainless steel subjected to dynamic impact load: XRD, SEM, TEM and EBSD analyses [J]. Materialia, 2018, 4: 81
|
40 |
Yang H J, Zhang J H, Xu Y B, et al. Microstructural characterization of the shear bands in Fe-Cr-Ni single crystal by EBSD [J]. J. Mater. Sci. Technol., 2008, 24: 819
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|