Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1011-1023    DOI: 10.11900/0412.1961.2023.00154
  研究论文 本期目录 | 过刊浏览 |
fccbcc钢板在超高速撞击下的微观组织差异
孙欢腾, 马运柱, 蔡青山(), 王健宁, 段有腾, 张梦祥
中南大学 粉末冶金研究院 长沙 410083
Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact
SUN Huanteng, MA Yunzhu, CAI Qingshan(), WANG Jianning, DUAN Youteng, ZHANG Mengxiang
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
引用本文:

孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
Huanteng SUN, Yunzhu MA, Qingshan CAI, Jianning WANG, Youteng DUAN, Mengxiang ZHANG. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. Acta Metall Sin, 2025, 61(7): 1011-1023.

全文: PDF(7547 KB)   HTML
摘要: 

不同晶体结构钢板在动态加载(撞击)下的微观组织特征响应行为是当前研究的热点与前沿问题。为研究不同晶体结构钢板在超高速撞击加载下的微观组织差异,利用二级轻气炮对304不锈钢和Q345钢板(2种典型晶体结构钢板)进行撞击实验,利用XRD、EBSD、TEM等表征方法对撞击后钢板的微观组织特征进行表征和分析。结果表明,在撞击条件下,304不锈钢板会发生α'-马氏体相变,并有少量的ε-马氏体相变发生,母相γ-奥氏体与α'-马氏体之间存在K-S位向关系。Q345钢板在撞击下未发生明显的相变,但其{200}晶面的衍射峰发生明显右移,晶面间距减少,{110}晶面的衍射峰强度大幅增加。从组织形貌看,在撞击条件下,304不锈钢板没有明显的晶体组织拉长现象,而Q345钢板发生了明显的晶体组织分层现象。

关键词 超高应变率微观组织特征冲击诱导马氏体相变动态力学行为晶体结构    
Abstract

The study of the dynamic behavior of materials under impact conditions is crucial in aerospace and defense industries. These materials are subjected to high speed and hyper-velocity impacts, high temperature, high pressure, and considerable deformation. Notably, many crystal-structured steel plates exhibit similar variability when subjected to impact conditions. A current and cutting-edge topic in contemporary research is the exploration of the microstructure properties of steel plates with various crystal structures under impact. This study aims to investigate the microstructural change of various crystalline structural steel materials under impact loads with high velocities. Two typical crystalline structural steels, 304 and Q345 stainless steels, were tested in impact tests using a two-stage light-gas pistol. The microstructure features of the steel plates under impact were characterized and examined using characterization techniques like XRD, EBSD, and TEM. Under impact conditions, the 304 stainless steel plate did not show any significant flanging phenomena at the macro level. However, there is a minor degree of ε-martensite transition and micro α'-martensite transformation that occurs on 304 stainless steel plates. Austenite and martensite have a similar K-S orientation relationship. Under the impact condition, the Q345 steel plate displays macro-level flipping properties but no overt micro-level phase transition. However, the diffraction peak on the {110} crystal plane substantially increases, the space between crystal planes narrows, and the {200} crystal plane shows a considerable diffraction peak shift to the right, creating the grains' preferred orientation. The Q345 steel plate exhibits considerable crystal structure delamination under impact, whereas 304 stainless steel did not display significant crystal structure elongation. The two types of steel plates have various macroscopic fracture modes owing to their differing crystal structures. Specifically, the Q345 steel demonstrates plastic fracture properties, whereas 304 stainless steel displays almost brittle fracture characteristics. The twin grain boundary of austenite is where martensite forms based on the calibration of electron diffraction spots.

Key wordsultra-high strain rate    microstructure characteristics    impact-induced martensitic phase transformation    dynamic mechanical behavior    crystal structure
收稿日期: 2023-04-06     
ZTFLH:  TG111  
基金资助:国家自然科学基金项目(51931012);湖南省自然科学基金项目(S2023JJJCQN0396)
通讯作者: 蔡青山,caiqingshan@csu.edu.cn,主要从事粉末冶金与材料动态力学性能研究
作者简介: 孙欢腾,男,1994年生,博士
图1  304不锈钢板和Q345钢板的宏观形貌、取样位置与电子背散射衍射(EBSD)测试位置图
图2  304不锈钢板和Q345钢板穿孔附近样品冲击方向-法向(ID-ND)面与远离穿孔处样品(位于沿中心穿孔的径向距钢板中心穿孔大约10 cm处)法向-横向(ND-TD)面的XRD谱
图3  304不锈钢穿孔附近不同位置(图1a2中位置1~4)马氏体相变的EBSD表征结果
图4  304不锈钢穿孔附近位置1的相分布与相界面图、相界面区域的γ-奥氏体{111}极图和{110}极图、相界面区域的α'-马氏体{110}极图和{111}极图
图5  304不锈钢穿孔附近不同位置(图1a2中位置1~4)动态回复再结晶的EBSD表征结果
图6  Q345钢穿孔附近不同位置(图1b2中位置1~4)动态回复再结晶的EBSD表征结果
图7  304不锈钢穿孔附近不同位置(图1a2中位置1~4)织构所占的面积分数
图8  304不锈钢穿孔附近不同位置(图1a2中位置1~4)的<110>//ID与<110>//ND织构分布
图9  Q345钢穿孔附近不同位置(图1b2中位置1~4)的织构所占的面积分数
图10  Q345钢板穿孔附近不同位置(图1b2中位置1~4)的<110>//ID和<110>//ND织构分布
图11  Q345钢板穿孔径向处(图1b2中位置5)的EBSD表征结果
图12  304不锈钢板撞击后穿孔附近的TEM表征结果
1 Liang H H, Li G. Study on microstructure and properties of heat treatment Q345 steel [J]. Foundry Technol., 2018, 39: 2087
1 梁慧慧, 李 光. Q345钢热处理组织与性能研究 [J]. 铸造技术, 2018, 39: 2087
2 Lin W, Zhang X W, Zhao Y K, et al. Continuous cooling transformation curve of undercooling austenite about Q345 steel [J]. Mater. Sci. Technol., 2009, 17: 247
2 林 武, 张希旺, 赵延阔 等. Q345钢奥氏体连续冷却转变曲线(CCT图) [J]. 材料科学与工艺, 2009, 17: 247
3 Zheng S G, Yan J, Gong W W. Hypervelocity impact failure modes of typical spacecraft components [J]. Space Int., 2022, (4): 29
3 郑世贵, 闫 军, 宫伟伟. 航天器典型部件超高速撞击失效模式 [J]. 国际太空, 2022, (4): 29
4 Chen J, Chen Y J, Yuan B H, et al. Experimental investigation on penetration behavior of reactive fragment against steel plates [J]. Sci. Technol. Eng., 2014, 14(35): 52
4 陈 进, 陈元建, 袁宝慧 等. 活性破片对钢板侵彻性能的实验研究 [J]. 科学技术与工程, 2014, 14(35): 52
5 Yu T X, Zhu L, Xu J. Progress in structural impact dynamics during 2010-2020 [J]. Explos. Shock Waves, 2021, 41(12): 121401
5 余同希, 朱 凌, 许 骏. 结构冲击动力学进展(2010-2020) [J]. 爆炸与冲击, 2021, 41(12): 121401
6 Al-Fadhalah K J. Strain-induced martensite formation and recrystallization behavior in 304 stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 1697
7 Okayasu M, Fukui H, Ohfuji H, et al. Strain-induced martensite formation in austenitic stainless steel [J]. J. Mater. Sci., 2013, 48: 6157
8 Zhang L M, Li Z X, Hu J X, et al. Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion [J]. Tribol. Int., 2021, 155: 106752
9 Zerouki M, Ouali M O, Benabou L. Metallurgical phase transformation and behavior of steels under impact loading [J]. Metall. Mater. Trans., 2020, 51A: 252
10 Luo C, Yuan H. Measurement and modeling of deformation-induced martensitic transformation in a metastable austenitic stainless steel under cyclic loadings [J]. Acta Mater., 2022, 238: 118202
11 Wang N, Chen Y N, Zhao Q Y, et al. Effect of strain rate on the strain partitioning behavior of ferrite/bainite in X80 pipeline steel [J]. Acta Metall. Sin., 2023, 59: 1299
doi: 10.11900/0412.1961.2021.00412
11 王 楠, 陈永楠, 赵秦阳 等. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响 [J]. 金属学报, 2023, 59: 1299
12 Shen Y F, Li X X, Xue W Y, et al. Changes in martensite fraction of 304SS in tensile deformation [J] J. Northeast. Univ. (Nat. Sci.), 2012, 33: 1125
12 申勇峰, 李晓旭, 薛文颖 等. 304不锈钢拉伸变形过程中的马氏体相变 [J]. 东北大学学报(自然科学版), 2012, 33: 1125
13 Xu Y, Song R B, Wang B N, et al. Study on deformation induced α′-martensitic transformation and fracture mechanism of 304HC stainless steel wire [J]. J. Plast. Eng., 2015, 22(4): 154
13 徐 杨, 宋仁伯, 王宾宁 等. 304HC不锈钢钢丝形变诱导α′-马氏体相变及断裂机制 [J]. 塑性工程学报, 2015, 22(4): 154
14 Yang F, Liang J, Yang R X, et al. Strain-induced martensite and its influence in stamping of 304 stainless steel sheet [J]. J. Mech. Eng., 2021, 57(8): 175
doi: 10.3901/JME.2021.08.175
14 杨 钒, 梁 君, 杨瑞霞. 304不锈钢板材冲压成形中应变诱发马氏体及其影响 [J]. 机械工程学报, 2021, 57(8): 175
15 Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2012, A552: 514
16 Liu Y, Xu H Z, Wang X F, et al. Progress in dynamic responses and microstructure evolution of the additive manufactured alloys under impact load [J]. Chin. J. High Pressure Phys., 2021, 35(4): 15
16 刘 洋, 徐怀忠, 汪小锋 等. 冲击载荷下增材制造金属材料的动态响应及微观结构演化研究进展 [J]. 高压物理学报, 2021, 35(4): 15
17 Singh P K, Kumar M. Hypervelocity impact behavior of projectile penetration on spacecraft structure: A review [J]. Mater. Today: Proc., 2022, 62: 3167
18 Ren S Y, Zhang Q M, Wu Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. Int. J. Impact Eng., 2019, 130: 124
19 Ni C H, Wang F C, Xu Q, et al. Deformation twinning in BCC iron under hypervelocity impact [J]. Trans. Beijing Inst. Technol., 2011, 31: 984
19 倪川皓, 王富耻, 徐 强 等. 超高速碰撞下体心立方纯铁的变形孪晶 [J]. 北京理工大学学报, 2011, 31: 984
20 Chen G X, Sang B G, Liu H W, et al. Hot deformation characteristics and dynamic recrystallization behavior of H13 steel at high temperature [J]. J. Plast. Eng., 2022, 29(6): 193
20 陈国鑫, 桑宝光, 刘宏伟 等. H13钢高温热变形特征与动态再结晶行为 [J]. 塑性工程学报, 2022, 29(6): 193
doi: 10.3969/j.issn.1007-2012.2022.06.024
21 Esquivel E V, Murr L E. Deformation effects in shocked metals and alloys [J]. Mater. Sci. Technol., 2006, 22: 438
22 Rodríguez-Martínez J A, Rusinek A, Pesci R. Experimental survey on the behaviour of AISI 304 steel sheets subjected to perforation [J]. Thin-Walled Struct., 2010, 48: 966
23 Liu M T, Guo Z L, Fan C, et al. Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external high-strain-rate loading [J]. Int. J. Solids Struct., 2016, 97-98: 336
24 Tiamiyu A A, Szpunar J A, Odeshi A G. Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: Grain size effect [J]. Mater. Charact., 2019, 154(20): 7
25 Gussev M N, Busby J T, Byun T S, et al. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations [J]. Mater. Sci. Eng., 2013, A588: 299
26 Liu C Y, Li D Z, Wei Y H, et al. Microstructure and property of TWIP steel under high speed dynamic test [J]. J. Iron Steel Res., 2010, 22(6): 48
26 刘春月, 李大赵, 卫英慧 等. 高速冲击条件下TWIP钢组织和性能的研究 [J]. 钢铁研究学报, 2010, 22(6): 48
27 Dai H X, Wang L, Xu X, et al. Deformation behavior of near-β Ti-5553 alloy under the impact of light gas gun [J]. Rare Met. Mater. Eng., 2018, 47: 657
27 代华湘, 王 琳, 徐 欣 等. Ti-5553合金在轻气炮冲击下的变形行为 [J]. 稀有金属材料与工程, 2018, 47: 657
28 Wang H H, Shi Z M, Tong Z. Surface hardening and numerical simulation on AISI304 stainless steel plates by explosive impact treatment [J]. Surf. Technol., 2018, 47(11): 54
28 王呼和, 史志铭, 佟 铮. 爆炸加载下AISI304不锈钢板表面硬化和数值模拟 [J]. 表面技术, 2018, 47(11): 54
29 Dougherty L M, Cerreta E K, Pfeif E A, et al. The impact of peak shock stress on the microstructure and shear behavior of 1018 steel [J]. Acta Mater., 2007, 55: 6356
30 Eskandari M, Szpunar J A. Microstructure and texture of high manganese steel subjected to dynamic impact loading [J]. Mater. Sci. Technol., 2020, 36: 1044
31 Zhang N B, Liu Q, Yang K, et al. Effects of shock-induced phase transition on spallation of a mild carbon steel [J]. Int. J. Mech. Sci., 2022, 213: 106858
32 Yang K, Li C, Zhao X J, et al. Impact-induced twinning and phase transition in a medium carbon steel [J]. J. Alloys Compd., 2021, 881: 160421
33 Wang S H, Hsiao W Y, Yang Y L, et al. Microstructural characterization and mechanical properties of duplex and super austenitic stainless steels under dynamic impact deformation [J]. J. Mater. Eng. Perform., 2021, 30: 8169
34 Chen A Y, Ruan H H, Wang J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel [J]. Acta Mater., 2011, 59: 3697
35 Rösner H, Boucharat N, Markmann J, et al. In situ transmission electron microscopic observations of deformation and fracture processes in nanocrystalline palladium and Pd90Au10 [J]. Mater. Sci. Eng., 2009, A525: 102
36 Quan G F, Cai L M. Mechanism of crack nucleation analysed by in situ observation on Mg-Al-Zn alloy [J]. Mater. Sci. Forum, 2007, 539-543: 1669
37 Xie J T, Wang Q J, Wang L Y. Dynamic recrystallization analysis on austenitic stainless steel 321 alloy at different strain rates [J]. Forg. Stamp. Technol., 2019, 44(6): 178
37 解婧陶, 王钦娟, 王璐银. 奥氏体不锈钢321合金不同应变速率下动态再结晶分析 [J]. 锻压技术, 2019, 44(6): 178
38 Xu Y B, Yang H J, Meyers A M. Application of EBSD in the investigation of the deformation microstructure induced during high-strain rate loading [J]. Chin. J. Mater. Res., 2009, 23: 561
38 徐永波, 阳华杰, Meyers A M. 背散射电子衍射在高应变率变形结构研究中的应用 [J]. 材料研究学报, 2009, 23: 561
39 Tiamiyu A A, Odeshi A G, Szpunar J A. Characterization of coarse and ultrafine-grained austenitic stainless steel subjected to dynamic impact load: XRD, SEM, TEM and EBSD analyses [J]. Materialia, 2018, 4: 81
40 Yang H J, Zhang J H, Xu Y B, et al. Microstructural characterization of the shear bands in Fe-Cr-Ni single crystal by EBSD [J]. J. Mater. Sci. Technol., 2008, 24: 819
[1] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[2] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[3] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[4] 王桢,周邦新,王波阳,黄娇,姚美意,张金龙. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为*[J]. 金属学报, 2016, 52(1): 78-84.
[5] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.
[6] 李强 梁雪 彭剑超 刘仁多 余康 周邦新. Zr-2.5Nb合金中β-Nb相的氧化过程[J]. 金属学报, 2011, 47(7): 893-898.
[7] 汪洋; 张琰; 王新华; 陈长聘 . Ti-Cr基合金的储氢性能及晶体结构[J]. 金属学报, 2006, 42(6): 641-646 .
[8] 张林; 刘宜华; 张连生; 张汝贞; 黄宝歆 . 纳米Fe-In2O3颗粒膜的结构与磁特性[J]. 金属学报, 2003, 39(1): 109-112 .
[9] 何巨龙; 田永君; 于栋利; 刘世民; 李阿丹; 胡前库; 李东春 . 六方(B1-xCx)N多晶粉末的化学合成[J]. 金属学报, 2001, 37(7): 759-762 .
[10] 刘志坚; 曲选辉; 黄伯云 . LiB化合物X射线衍射强度计算与晶胞中电子密度分布[J]. 金属学报, 2001, 37(4): 340-344 .
[11] 金头男; 尹志民; 李斗星 . 一种新的Ti-Al-Sc化合物晶体结构测定[J]. 金属学报, 2001, 37(3): 225-229 .
[12] 易丹青; 杜若昕; 曹昱 . M5Si3型硅化物的研究及相关的物理冶金学问题[J]. 金属学报, 2001, 37(11): 1121-1130 .
[13] 吕维洁; 卞玉君 . 原位合成TiB/Ti基复合材料增强体的生长机制[J]. 金属学报, 2000, 36(1): 104-108 .
[14] 刘长洪; 黄晁 . Zr掺杂对碳化硼晶格结构的影响[J]. 金属学报, 1999, 35(8): 785-788 .
[15] 潘洪革;杜红林;陈长聘;韩秀锋;杨伏明. Y_3(Fe,M0)_(29)金属间化合物的结构特性[J]. 金属学报, 1998, 34(5): 473-482.