Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 400-410    DOI: 10.11900/0412.1961.2019.00371
  综述 本期目录 | 过刊浏览 |
高强度高塑性第三代汽车钢的M3组织调控理论与技术
王存宇1,常颖2(),周峰峦1,曹文全1,董瀚1,3,翁宇庆1
1.钢铁研究总院特殊钢研究所 北京 100081
2.大连理工大学汽车工程学院 大连 116024
3.上海大学材料科学与工程学院 上海 200444
M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility
WANG Cunyu1,CHANG Ying2(),ZHOU Fengluan1,CAO Wenquan1,DONG Han1,3,WENG Yuqing1
1.Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2.School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
3.School of Material Science and Engineering, Shanghai University, Shanghai 200444, China
全文: PDF(6927 KB)   HTML
摘要: 

高强度、高塑性是汽车钢的重要发展方向,本文综述了高强度高塑性第三代汽车钢的“多相(multiphase)、亚稳(metastable)和多尺度(multiscale)” M3组织性能调控理论和技术,以及面临的新挑战。M3组织与性能调控理论为高强度高塑性钢提供了理论支持,亚稳奥氏体的相变诱发塑性(TRIP)效应能够提高加工硬化率并推迟颈缩的发生,从而提高了钢的强度与塑性,同时产生了剪切边裂纹敏感性提高,氢致延迟断裂性能下降,循环载荷下亚稳奥氏体的转变行为复杂等新的问题和挑战。当前,含亚稳奥氏体高强度高塑性钢的质量一致性和应用基础研究缺乏,而汽车钢作为量大面广的产品,需要从它的成分设计和组织调控-冲裁切割-成形制造-连接涂装-服役评价等全链条环节中开展组织演变和性能评估,充分考虑产品的技术适用性和成本,进而为组织调控理论和技术的完善提供依据。

关键词 汽车钢强度塑性亚稳奥氏体中锰钢Q&P钢    
Abstract

An important topic is the achievement of high strength and high plasticity for the development of automotive steels. Present article reviews the M3 (multiphase, metastable and multiscale) microstructure and property control theory and technology of high-strength and high-ductility third-generation automotive steels, as well as new challenges. M3 microstructure and property-microstructure control theory provide theoretical support for the development of steels with high strength and high plasticity. Transformation induced plasticity (TRIP) effect of metastable austenite has a significant influence on properties and microstructure of steels. On the one hand, it can enhance the work-hardening rate and thereby improve strength and plasticity of steels. On the other hand, it causes some new problems, such as the increase of the shear edge crack sensitivity, the decrease of hydrogen induced delayed fracture properties, and more complex transformation behavior of metastable austenite under cyclic loading. At present, the quality consistency and basic research on application are insufficient for the high-strength and high-plasticity steels with metastable austenite. As a widely-applied product, the automotive steels need be evaluated in microstructure evolution and properties from the whole chain including composition design, microstructure control, cutting process, forming process, joining process and service performance. The evaluation results will provide the basis for the improvement of microstructure control theory and technology. Full consideration will be given in the technical applicability and cost of products.

Key wordsautomotive steel    strength    ductility    metastable austenite    medium manganese steel    Q&P steel
收稿日期: 2019-11-04     
ZTFLH:  TG142.1,TG161  
基金资助:国家重点研发计划项目(2017YFB0304401);国家重点研发计划项目(2016YFB0101605);国家自然科学基金项目(51971050);国家自然科学基金项目(51571048);国家重点基础研究发展计划项目(2010CB630803)
通讯作者: 常颖     E-mail: yingc@dlut.edu.cn
Corresponding author: Ying CHANG     E-mail: yingc@dlut.edu.cn
作者简介: 王存宇,男,1979年生,教授级高级工程师,博士|常 颖(共同第一作者),女,1977年生,副教授,博士

引用本文:

王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
Cunyu WANG, Ying CHANG, Fengluan ZHOU, Wenquan CAO, Han DONG, Yuqing WENG. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility. Acta Metall Sin, 2020, 56(4): 400-410.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00371      或      https://www.ams.org.cn/CN/Y2020/V56/I4/400

图1  工业生产先进高强度钢的强度级别和980 MPa级系列塑性汽车钢的总伸长率
图2  第三代汽车钢强度塑性图[2]
图3  M3 (多相、亚稳和多尺度)组织调控思路、正/逆相变工艺及其性能调控原理
图4  亚稳奥氏体含量与钢强塑积的关系[41]和奥氏体体积分数对中锰钢加工硬化行为的影响
图5  第三代汽车钢的典型微观组织
图6  0.13C-5Mn钢不同应力-循环周次下亚稳奥氏体转变情况[71]
图7  亚稳奥氏体含量对延迟断裂性能的影响[72]
图8  圆角区、光亮带和撕裂带的亚稳奥氏体对剪切边加工硬化行为的影响[74]
[1] Society of Automotive Engineers of China, China Auto Lightweight Technology Innovation Strategic Alliance, Research Center of FAW Group Co., Ltd. China Automotive Lightweight Development—Strategy and Path [M]. Beijing: Beijing Institute of Technology Press, 2015: 1
[1] 中国汽车工程学会, 中国汽车轻量化技术创新战略联盟, 中国第一汽车股份有限公司技术中心. 中国汽车轻量化发展: 战略与路径 [M]. 北京: 北京理工大学出版社, 2015: 1
[2] World Steel Association, World Automobile Steel Union, translated by Baosteel Co., Ltd. Advanced High-strength Steels Application Guidelines [M]. Beijing: Metallurgical Industry Press, 2018: 1
[2] 世界钢铁协会, 世界汽车用钢联盟著, 宝山钢铁股份有限公司译. 先进高强度钢应用指南 [M]. 北京: 冶金工业出版社, 2018: 1
[3] Strategic Advisory Committee of Energy Saving and New Energy Vehicle Technology Roadmap, Society of Automotive Engineers of China. Technology Roadmap for Energy Saving and New Energy Vehicle [M]. Beijing: Mechanical Industry Press, 2016: 1
[3] 节能与新能源汽车技术路线图战略咨询委员会, 中国汽车工程学会. 节能与新能源汽车技术路线图 [M]. 北京: 机械工业出版社, 2016: 1
[4] Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels [J]. Iron Steel, 2019, 54(2): 1
[4] 王存宇, 杨 洁, 常 颖等. 先进高强度汽车钢的发展趋势与挑战 [J]. 钢铁, 2019, 54(2): 1
[5] Wang C Y, Cao W Q, Dong H. The third generation automobile steel of medium manganese and its advantages [A]. Proceedings of the 11th CSM Steel Congress—S07. Automobile Steel [C]. Beijing: The Chinese Society of Metals, 2017: 1648
[5] 王存宇, 曹文全, 董 瀚. 中锰第三代汽车钢及其先进性 [A]. 第十一届中国钢铁年会论文集——S07.汽车钢 [C]. 北京: 中国金属学会, 2017: 1648
[6] Heimbuch R. Overview: Auto/Steel partnership [EB/OL]. http://www.a-sp.org
[7] Hall E O. The deformation and ageing of mild steel: Ⅲ Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
[8] Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
[9] Petch N J. The ductile-brittle transition in the fracture of α-iron: I [J]. Philos. Mag., 1958, 3: 1089
[10] Cottrell A H. Theory of brittle fracture in steel and similar metals [J]. Trans. Metall. Soc. Am. Inst. Min. Metall. Eng., 1958, 212: 192
[11] Takaki S. Ultra grain refining of iron and the mechanism of grain refining strengthening [A]. Proceedings of Workshop on New Generation Steel' 2001 [C]. Beijing: The Chinese Society of Metals, 2001: 92
[12] Takaki S, Toknnaga Y. Innovation stainless steel [A]. Proceeding of 1st European Stainless Steel Conference [C]. W. Nicodemi ec., Florence: Associazionc Italiana di Mctallurgic, 1993: 327
[13] Dong H, Sun X J, Hui W J, et al. Grain refinement in steels and the application trials in China [J]. ISIJ Int., 2008, 48: 1126
[14] Weng Y Q. Ultra-Fine Grained Steels [M]. Berlin, Heidelberg: Springer, 2009: 1
[15] Priestner R, Ali L. Strain induced transformation in C-Mn steel during single pass rolling [J]. Mater. Sci. Technol., 1993, 9: 135
[16] Matsumura Y, Yada H. Evolution of ultrafine-grained ferrite in hot successive deformation [J]. Trans. ISIJ, 1987, 27: 492
[17] Weng Y Q. Development of ultrafine grained steel in China [A]. Proceedings of International Session of Workshop on New Generation Steel' 2001 [C]. Beijing: The Chinese Society of Metals, 2001: 1
[18] Wang R Z, Lei T C. Dynamic recrystallization of ferrite in a low carbon steel during hot rolling in the (F+A) two-phase range [J]. Scr. Metall. Mater., 1994, 31: 1193
[19] Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles [J]. Scr. Mater., 2005, 52: 1075
[20] Calcagnotto M, Ponge D, Raabe D. Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 7832
[21] Papa R M, Sarma V S, Sankaran S. Microstructure and mechanical properties of V-Nb microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing [J]. Metall. Mater. Trans., 2017, 48A: 1176
[22] Sun R M, Xu W H, Wang C Y, et al. Work hardening behavior of ultrafine grained duplex medium-Mn steels processed by ART-annealing [J]. Steel Res. Int., 2012, 83: 316
[23] Lan H F, Liu X H, Du L X. Enhanced mechanical stability of ultrafine grained steel through intercritical annealing cold rolled martensite [J]. Acta Metall. Sin. (Engl. Lett., 2012, 25: 443
[24] Liu J, Zhu G H. Model of the effect of grain size on plasticity in ultra-fine grain size steels [J]. Acta Metall. Sin., 2015, 51: 777
[24] 刘 觐, 朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型 [J]. 金属学报, 2015, 51: 777
[25] Weng Y Q. Ultrafine Grain Steel—Microstructure Refinement Theory and Control Technology of Steel [M]. Beijing: Metallurgical Industry Press, 2003: 1
[25] 翁宇庆. 超细晶钢——钢的组织细化理论与控制技术 [M]. 北京: 冶金工业出版社, 2003: 1
[26] Saeidi N, Ashrafizadeh F, Niroumand B. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior [J]. Mater. Sci. Eng., 2014, A599: 145
[27] Ma M T, Wu B R. Dual Phase Steels—Physical and Mechanical Metallurgy [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2009: 1
[27] 马鸣图, 吴宝荣. 双相钢——物理和力学冶金 [M]. 第2版. 北京: 冶金工业出版社, 2009: 1
[28] Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility on high-strength steel [J]. Trans. Appl. Struct. Mech., 1967, 60: 252
[29] Wang X D, Wang L, Rong Y H. Current research condition and development of TRIP steel [J]. Heat Treat., 2008, 23(6): 8
[29] 王晓东, 王 利, 戎咏华. TRIP钢研究的现状与发展 [J]. 热处理, 2008, 23(6): 8
[30] Bleck W, Guo X F, Ma Y. The TRIP effect and its application in cold formable sheet steels [J]. Steel Res. Int., 2017, 88: 1700218
[31] Dong H, Wang M Q, Weng Y Q. Performance improvement of steels through M3 structure control [J]. Iron Steel, 2010, 45(7): 1
[31] 董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术 [J]. 钢铁, 2010, 45(7): 1
[32] Xie Z J, Ren Y Q, Zhou W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel [J]. Mater. Sci. Eng., 2014, A603: 69
[33] Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering [J]. Mater. Sci. Eng., 2014, A618: 112
[34] Weng Y Q, Dong H, Gan Y. Advanced Steels: The Recent Scenario in Steel Science and Technology [M]. Berlin, Heidelberg: Springer, 2011: 209
[35] Dong H. High performance steels: Initiative and practice [J]. Sci. China Technol. Sci., 2012, 55: 1774
[36] Wang C Y, Chang Y, Li X D, et al. Relation of martensite-retained austenite and its effect on microstructure and mechanical properties of the quenched and partitioned steels [J]. Sci. China Technol. Sci., 2016, 59: 832
[37] Yang F, Luo H W, Hu C D, et al. Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel [J]. Mater. Sci. Eng., 2017, A685: 115
[38] Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, A review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
[39] Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
[40] Wang C Y, Chang Y, Yang J, et al. Work hardening behavior and stability of retained austenite for quenched and partitioned steels [J]. J. Iron Steel Res. Int., 2016, 23: 130
[41] Wang C Y. Investigation on 30 GPa·% grade ultrahigh-strength martensitic-austenitic steels [D]. Beijing: Central Iron and Steel Research Institute, 2010
[41] 王存宇. 30 GPa·%级超高强度马奥组织钢的研究 [D]. 北京: 钢铁研究总院, 2010
[42] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Metall., 2003, 51: 2611
[43] Edmonds D V, He F C, Rizzo K, et al. Quenching and Partitioning Martensite—A novel steel heat treatment [J]. Mater. Sci. Eng., 2006, A438-440: 25
[44] Hsu T Y. New processes for steel heat treatment [J]. Heat Treat., 2007, 22(1): 1
[44] 徐祖耀. 钢热处理的新工艺 [J]. 热处理, 2007, 22(1): 1
[45] Matlock D K, Br?utigam V E, Speer J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel [J]. Mater. Sci. Forum, 2003, 426-432: 1089
[46] Rizzo F, Martins A R, Speer J G, et al. Quenching and partitioning of Ni-added high strength steels [J]. Mater. Sci. Forum, 2006, 539-543: 4476
[47] Zhong N, Wang X D, Huang B X, et al. Microstructures and mechanical property of quenched and partitioned Fe-C-Mn-Si steel [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels [C]. Gyeongju, Korea: Institute Metals and Materials, 2006: 885
[48] De Cooman B C, Speer J G. Microstructure-properties relationships in quench and partition (Q&P) steel implications for automotive anti-intrusion applications [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels [C]. Gyeongju, Korea: Institute Metals and Materials, 2006: 798
[49] Jia X S, Zuo X W, Chen N L, et al. Microstructure and properties of Q235 steel treated by novel Q-P-T process [J]. Acta Metall. Sin., 2013, 49: 35
[49] 贾晓帅, 左训伟, 陈乃录等. 经新型Q-P-T工艺处理后Q235钢的组织与性能 [J]. 金属学报, 2013, 49: 35
[50] Gui X L, Zhang B X, Gao G H, et al. Fatigue behavior of bainite/martensite multiphase high strength steel treated by quenching-partitioning-tempering process [J]. Acta Metall. Sin., 2016, 52: 1036
[50] 桂晓露, 张宝祥, 高古辉等. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究 [J]. 金属学报, 2016, 52: 1036
[51] Xu Y S, Gong Y, Du H, et al. A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel [J]. Int. J. Lightweight Mater. Manuf., 2019, DOI: 10.1016/j.ijlmm.2019.11.003
[52] Cai H L, Chen P, Oh J K, et al. Quenching and flash-partitioning enables austenite stabilization during press-hardening processing [J]. Scr. Mater., 2020, 178: 77
[53] Wang C Y, Chang Y, Yang J, et al. The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel [J]. Acta Metall. Sin., 2015, 51: 913
[53] 王存宇, 常 颖, 杨 洁等. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响 [J]. 金属学报, 2015, 51: 913
[54] Zhu Y F, Wang F Y, Zhou H H, et al. Stepping-quenching-partitioning treatment of 20SiMn2MoVA steel and effects of carbon and carbide forming elements [J]. Sci. China Technol. Sci., 2012, 55: 1838
[55] Zhong N, Wang X D, Rong Y H, et al. Interface migration between martensite and austenite during quenching and partitioning (Q&P) process [J]. J. Mater. Sci. Technol., 2006, 22: 751
[56] Yang F, Luo H W, Pu E X, et al. On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity [J]. Int. J. Plast., 2018, 103: 188
[57] Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
[58] Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
[59] Wang X G, Wang L, Huang M X. In-situ evaluation of Lüders band associated with martensitic transformation in a medium Mn transformation-induced plasticity steel [J]. Mater. Sci. Eng., 2016, A674: 59
[60] Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
[61] Wang C, Shi J, Wang C Y, et al. Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing [J]. ISIJ Int., 2011, 51: 651
[62] Zhou F L, Wang C Y, Han S, et al. Study on microstructure, mechanical properties and forming limit curve of ART-annealed medium manganese steel [J]. J. Iron Steel Res., 2019, 31: 394
[62] 周峰峦, 王存宇, 韩 硕等. 逆相变退火中锰钢的组织性能与成形极限 [J]. 钢铁研究学报, 2019, 31: 394
[63] Zhang Y J, Hui W J, Zhao X L, et al. Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel (0.1C-5Mn) [J]. Eng. Fail. Anal., 2019, 97: 605
[64] Zhao X L, Zhang Y J, Shao C W, et al. Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel [J]. Acta Metall. Sin., 2018, 54: 1031
[64] 赵晓丽, 张永健, 邵成伟等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性 [J]. 金属学报, 2018, 54: 1031
[65] Li L, Gao Y, Shi W, et al. Martensite transformation and its control in DP, TRIP and TWIP steels [J]. J. Iron Steel Res. Int., 2011, 18: 200
[66] Chang Y, Wang C Y, Zhao K M, et al. An introduction to medium-Mn steel: Metallurgy, mechanical properties and warm stamping process [J]. Mater. Des., 2016, 94: 424
[67] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
[68] Zheng G J, Chang Y, Fan Z Y, et al. Study of thermal forming limit of medium-Mn steel based on finite element analysis and experiments [J]. Int. J. Adv. Manuf. Technol., 2018, 94: 133
[69] Chang Y, Wang M H, Wang N, et al. Investigation of forming process of the third-generation automotive medium-Mn steel part with large-fractioned metastable austenite for high formability [J]. Mater. Sci. Eng., 2018, A721: 179
[70] Chang Y, Han S, Li X D, et al. Effect of shearing clearance on formability of sheared edge of the third-generation automotive medium-Mn steel with metastable austenite [J]. J. Mater. Process. Technol., 2018, 259: 216
[71] Wang C Y. Investigation on key technology of the third generation automobile steel [R]. Taiyuan: TISCO, 2017
[71] 王存宇. 第三代汽车钢工业生产关键技术研究 [R]. 太原: 太原钢铁(集团)有限公司博士后报告, 2017
[72] Zhang Y J. Study on hydrogen delayed fracture behaviour of ultra-high strength steel sheets [D]. Beijing: Central Iron and Steel Research Institute, 2013
[72] 张永健. 超高强度薄板钢的氢致延迟断裂行为研究 [D]. 北京: 钢铁研究总院, 2013
[73] Zhao X L, Zhang Y J, Huang H T, et al. Effect of tempering treatment on hydrogen embrittlement sensitivity of cold-rolled and intercritically annealed medium-Mn 0.1C-5Mn steel [J]. Trans. Mater. Heat Treat., 2018, 39(10): 36
[73] 赵晓丽, 张永健, 黄海涛等. 回火对冷轧后退火处理中锰钢0.1C-5Mn氢脆敏感性的影响 [J]. 材料热处理学报, 2018, 39(10): 36
[74] Han S. Investigations on sheared edge crack susceptibility of the third generation automobile steels [D]. Dalian: Dalian University of Technology, 2017
[74] 韩 硕. 第三代汽车钢剪切边裂纹敏感性研究 [D]. 大连: 大连理工大学, 2017
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[3] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[4] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[5] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[6] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[11] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[12] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[13] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[14] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[15] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.