|
|
Cu-V双合金化3Mn钢的组织和力学性能 |
许仁杰, 屠鑫, 胡斌( ), 罗海文( ) |
北京科技大学 冶金与生态工程学院 北京 100083 |
|
Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel |
XU Renjie, TU Xin, HU Bin( ), LUO Haiwen( ) |
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
Renjie XU,
Xin TU,
Bin HU,
Haiwen LUO.
Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. Acta Metall Sin, 2024, 60(6): 817-825.
1 |
Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels [J]. Iron Steel, 2011, 46(6): 1
|
1 |
董 瀚, 曹文全, 时 捷 等. 第3代汽车钢的组织与性能调控技术 [J]. 钢铁, 2011, 46(6): 1
|
2 |
Hu B, Tu X, Luo H W, et al. Effect of warm rolling process on microstructures and tensile properties of 10 Mn steel [J]. J. Mater. Sci. Technol., 2020, 47: 131
|
3 |
Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
|
3 |
王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
|
4 |
Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
|
5 |
Zhu Y S, Hu B, Luo H W. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389
|
6 |
Park T M, Jeong M S, Jung C, et al. Improved strength of a medium-Mn steel by V addition without sacrificing ductility [J]. Mater. Sci. Eng., 2021, A802: 140681
|
7 |
Othen P J, Jenkins M L, Smith G D W. High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe [J]. Philos. Mag., 1994, 70A: 1
|
8 |
Maruyama N, Sugiyama M, Hara T, et al. Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels [J]. Mater. Trans. JIM, 1999, 40: 268
|
9 |
Du Y B, Hu X F, Zhang S Q, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu [J]. Acta Metall. Sin., 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
|
9 |
杜瑜宾, 胡小锋, 张守清 等. 含1.4%Cu的HSLA钢的组织和力学性能 [J]. 金属学报, 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
|
10 |
Hu B, Rong X Q, Tian C, et al. Nanoscale precipitation and ultrafine retained austenite induced high strength-ductility combination in a newly designed low carbon Cu-bearing medium-Mn steel [J]. Mater. Sci. Eng., 2021, A822: 141685
|
11 |
Isheim D, Vaynman S, Fine M E, et al. Copper-precipitation hardening in a non-ferromagnetic face-centered cubic austenitic steel [J]. Scr. Mater., 2008, 59: 1235
|
12 |
Sherif M Y, Mateo C G, Sourmail T, et al. Stability of retained austenite in TRIP-assisted steels [J]. Mater. Sci. Technol., 2004, 20: 319
|
13 |
Sugimoto K I, Kobayashi M, Hashimoto S I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel [J]. Metall. Mater. Trans., 1992, 23A: 3085
|
14 |
Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans., 2005, 36A: 3281
|
15 |
Podder A S, Bhadeshia H K D H. Thermal stability of austenite retained in bainitic steels [J]. Mater. Sci. Eng., 2010, A527: 2121
|
16 |
Tian C, Guo H, Enomoto M, et al. Non-uniform distribution and strengthening effect of Cu precipitates enclosed in austenite during intercritical annealing in a medium Mn steel [J]. Mater. Charact., 2022, 184: 111669
|
17 |
Cheng P, Hu B, Liu S L, et al. Influence of retained austenite and Cu precipitates on the mechanical properties of a cold-rolled and intercritically annealed medium Mn steel [J]. Mater. Sci. Eng., 2019, A746: 41
|
18 |
Zou Y, Xu Y B, Han D T, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel [J]. Mater. Sci. Eng., 2018, A729: 423
|
19 |
Zou Y, Xu Y B, Han D T, et al. Combined contribution of Cu-rich precipitates and retained austenite on mechanical properties of a novel low-carbon medium-Mn steel plate [J]. J. Mater. Sci., 2019, 54: 3438
doi: 10.1007/s10853-018-3021-x
|
20 |
Kong H J, Yang T, Chen R, et al. Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions [J]. Scr. Mater., 2020, 186: 213
|
21 |
Yan S, Liang T S, Chen J Q, et al. A novel Cu-Ni added medium Mn steel: Precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Mater. Sci. Eng., 2019, A746: 73
|
22 |
Chen J, Ren J K, Liu Z Y, et al. 1.0 GPa low carbon medium Mn heavy steel plate with excellent ductility [J]. Mater. Sci. Technol., 2019, 35: 2143
|
23 |
Yi H L, Zhang L R, Yu X X, et al. Structure and properties of vanadium microalloyed medium manganese steel [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.), 2016, 44(1): 60
|
23 |
衣海龙, 张路冉, 余宣询 等. 钒微合金化中锰钢组织与性能研究 [J]. 华中科技大学学报(自然科学版), 2016, 44(1): 60
|
24 |
Mishra G, Chandan A K. Effect of cold deformation extent and ART annealing duration on the microstructure and mechanical properties of a medium manganese steel [J]. Mater. Chem. Phys., 2021, 271: 124940
|
25 |
Warren B E. X-ray studies of deformed metals [J]. Prog. Metal Phys., 1959, 8: 147
|
26 |
Williamson G K, Smallman R E. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum [J]. Philos. Mag., 1956, 1: 34
|
27 |
Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
|
28 |
Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. R. Soc. London, 1934, 145A: 362
|
29 |
Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
|
30 |
Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel [J]. Mater. Trans., 2004, 45: 2245
|
31 |
Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel [J]. Metall. Mater. Trans., 2018, 49A: 4404
|
32 |
Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
|
33 |
Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels [J]. Mater. Des., 2015, 83: 42
|
34 |
Hu B, Luo H W. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel [J]. Acta Mater., 2019, 176: 250
|
35 |
Luo H W, Qiu C H, Dong H, et al. Experimental and numerical analysis of influence of carbide on austenitisation kinetics in 5Mn TRIP steel [J]. Mater. Sci. Technol., 2014, 30: 1367
|
36 |
Ding R, Dai Z B, Huang M X, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel [J]. Acta Mater., 2018, 147: 59
|
37 |
Orowan E. Symposium on Internal Stresses in Metals and Alloys [M]. London: Institute of Metals, 1948: 451
|
38 |
Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol, 1999, 15: 30
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|