Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 817-825    DOI: 10.11900/0412.1961.2022.00101
  研究论文 本期目录 | 过刊浏览 |
Cu-V双合金化3Mn钢的组织和力学性能
许仁杰, 屠鑫, 胡斌(), 罗海文()
北京科技大学 冶金与生态工程学院 北京 100083
Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel
XU Renjie, TU Xin, HU Bin(), LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
Renjie XU, Xin TU, Bin HU, Haiwen LUO. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. Acta Metall Sin, 2024, 60(6): 817-825.

全文: PDF(3089 KB)   HTML
摘要: 

研究了Cu-V双合金化的3Mn钢热轧板在550~650℃温轧和临界退火等制备工艺过程中(简称温轧退火样品)的组织演变与最终力学性能,并与热轧后在同样温度范围时效处理并临界退火的样品(简称热轧时效退火样品)进行对比。结果表明,温轧退火样品的塑性显著高于热轧时效退火样品,但2者屈服强度相似,这归因于温轧阶段引入大量缺陷,促进了临界退火时奥氏体逆转变过程,提高了残余奥氏体分数,最终可实现屈服强度高达1230~1320 MPa并保有23%~29%的延伸率,这一综合性能显著优于文献中Cu/V单一合金化的中锰钢,尤其是屈服强度大幅提高。这是由于采用了Cu-V双合金化并且在热轧后采用了温轧加临界退火的两段热变形处理工艺,除了在温轧阶段引入富Cu析出相以实现强化外,在临界退火阶段析出的VC还弥补了由于退火导致的软化,实现了高屈服强度;并形成25%~30%的残余奥氏体来提供相变诱导塑性,从而保证了高塑性。

关键词 中锰钢温轧析出相奥氏体力学性能    
Abstract

Recently, medium Mn steels (MMnS) have been extensively investigated because of the excellent mechanical combination of strength and ductility achieved at the relatively low alloying cost. Intercritical annealing (IA) is a key process of MMnS to form intercritical austenite that can be retained fully or partially at room temperature, which can trigger transformation-induced plasticity and then improve work hardening during deformation. However, this process leads to a relatively low yield strength because the recovery, recrystallization, grain growth, coarsening, and dissolution of precipitates could occur during IA. In this study, the microstructural evolution and resultant mechanical properties of Cu-V dual alloyed 3Mn steel were examined during two manufacturing processes: hot rolling → warm rolling at 550-650°C → IA at 690°C for 10 min (termed as WR-IA) and hot rolling → aging at 550-650°C for 70 min → IA at 690°C for 10 min (termed as Aging-IA). That is,the two processes differentiate in either the warm rolling or the aging process used as the intermediate process. WR-IA specimens exhibit significantly higher ductility than Aging-IA ones, but they both have the same yield strength. The former is attributed to a large quantity of defects introduced during warm rolling, which promoted austenite reverse transformation during IA and led to a large fraction of retained austenite. The resultant tensile properties include yield strength of 1230-1320 MPa and ductility of 23%-29%, which is superior to those of either V- or Cu-alloyed MMnS published in references. In particular, higher yield strength was achieved because the dual alloying of Cu-V and the two-stage thermomechanical process, that is,warm rolling plus IA, are adopted. The first warm rolling promoted Cu-rich precipitates dispersed for strengthening, and the precipitation of VC during subsequent IA could compensate for the softening caused by IA. Consequently, a high yield strength was achieved. Meanwhile, 25%-30% fraction of austenite was retained, thereby providing transformation-induced plasticity during deformation, leading to high ductility.

Key wordsmedium Mn steel    warm rolling    precipitate    austenite    mechanical property
收稿日期: 2022-03-07     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51831002);中央高校基本科研业务费专项基金项目(06600019;06500151)
通讯作者: 罗海文,luohaiwen@ustb.edu.cn,主要从事先进钢铁材料的制备与研究;
胡 斌,hubin@ustb.edu.cn,主要从事先进钢铁材料组织性能调控研究;
Corresponding author: LUO Haiwen, professor, Tel: (010)62332911, E-mail: luohaiwen@ustb.edu.cn;
HU Bin, associate professor, Tel: (010)62332911, E-mail: hubin@ustb.edu.cn
作者简介: 许仁杰,男,1997年生,硕士
图1  实验所采用的2种制备工艺流程示意图
图2  经不同工艺制备的实验用3Mn钢拉伸性能
SpecimenYS / MPaUTS / MPaTE / %
WR5501800 ± 9.21870 ± 7.82.28 ± 0.21
WR6001650 ± 11.31745 ± 8.75.61 ± 0.32
WR6501455 ± 4.31520 ± 3.75.43 ± 0.41
WR550-6901325 ± 13.21390 ± 10.323.37 ± 0.72
WR600-6901300 ± 12.71365 ± 9.824.05 ± 0.47
WR650-6901230 ± 15.11290 ± 12.828.92 ± 0.94
HR550-6901290 ± 10.41330 ± 5.69.51 ± 0.41
HR600-6901330 ± 8.81370 ± 8.710.73 ± 0.38
HR650-6901265 ± 7.81305 ± 5.515.75 ± 0.49
表1  经不同工艺制备的实验用3Mn钢力学性能总结
图3  温轧及温轧退火样品组织的二次电子像
图4  温轧退火以及热轧时效退火组织的EBSD质量图与相分布叠加图
图5  温轧及温轧退火试样显微组织的TEM表征结果

Specimen

Precipitate

Diameter

nm

Number density

m-3

Volume fraction %
WR550Cu-rich8.8 ± 1.94.51 × 10230.34
WR600Cu-rich13.6 ± 2.85.85 × 10230.77
WR650Cu-rich15.7 ± 1.73.35 × 10230.68
VC11.9 ± 3.52.15 × 10230.19
WR550-690Cu-rich19.2 ± 2.97.89 × 10220.29
VC19.3 ± 6.56.64×10220.25
WR600-690Cu-rich27.1 ± 3.51.27 × 10230.69
VC21.1 ± 6.15.89 × 10220.29
WR650-690Cu-rich34.5 ± 3.81.44 × 10220.31
VC20.2 ± 3.68.57 × 10220.37
表2  温轧及温轧退火试样中富Cu和VC纳米析出相的尺寸、密度与体积分数
图6  实验用钢在不同工艺下所计算得到的位错与析出强化增量
SpecimenBefore deformationAfter deformationTransformed percentage
WR5501.3 ± 0.12NoneNone
WR6002.1 ± 0.09
WR6508.3 ± 0.41
WR550-69031.4 ± 0.715.2 ± 0.4683.4
WR600-69022.3 ± 0.567.1 ± 0.2868.1
WR650-69028.3 ± 0.896.4 ± 0.2577.3
HR550-69021.1 ± 0.317.4 ± 0.3664.9
HR600-69015.7 ± 0.437.5 ± 0.4352.2
HR650-69018.1 ± 0.496.8 ± 0.4962.4
表3  不同样品在变形前后的奥氏体体积分数
图7  温轧样品中渗碳体粒子的尺寸分布及温轧退火样品中奥氏体C含量与机械稳定性
1 Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels [J]. Iron Steel, 2011, 46(6): 1
1 董 瀚, 曹文全, 时 捷 等. 第3代汽车钢的组织与性能调控技术 [J]. 钢铁, 2011, 46(6): 1
2 Hu B, Tu X, Luo H W, et al. Effect of warm rolling process on microstructures and tensile properties of 10 Mn steel [J]. J. Mater. Sci. Technol., 2020, 47: 131
3 Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
3 王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
4 Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
5 Zhu Y S, Hu B, Luo H W. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389
6 Park T M, Jeong M S, Jung C, et al. Improved strength of a medium-Mn steel by V addition without sacrificing ductility [J]. Mater. Sci. Eng., 2021, A802: 140681
7 Othen P J, Jenkins M L, Smith G D W. High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe [J]. Philos. Mag., 1994, 70A: 1
8 Maruyama N, Sugiyama M, Hara T, et al. Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels [J]. Mater. Trans. JIM, 1999, 40: 268
9 Du Y B, Hu X F, Zhang S Q, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu [J]. Acta Metall. Sin., 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
9 杜瑜宾, 胡小锋, 张守清 等. 含1.4%Cu的HSLA钢的组织和力学性能 [J]. 金属学报, 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
10 Hu B, Rong X Q, Tian C, et al. Nanoscale precipitation and ultrafine retained austenite induced high strength-ductility combination in a newly designed low carbon Cu-bearing medium-Mn steel [J]. Mater. Sci. Eng., 2021, A822: 141685
11 Isheim D, Vaynman S, Fine M E, et al. Copper-precipitation hardening in a non-ferromagnetic face-centered cubic austenitic steel [J]. Scr. Mater., 2008, 59: 1235
12 Sherif M Y, Mateo C G, Sourmail T, et al. Stability of retained austenite in TRIP-assisted steels [J]. Mater. Sci. Technol., 2004, 20: 319
13 Sugimoto K I, Kobayashi M, Hashimoto S I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel [J]. Metall. Mater. Trans., 1992, 23A: 3085
14 Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans., 2005, 36A: 3281
15 Podder A S, Bhadeshia H K D H. Thermal stability of austenite retained in bainitic steels [J]. Mater. Sci. Eng., 2010, A527: 2121
16 Tian C, Guo H, Enomoto M, et al. Non-uniform distribution and strengthening effect of Cu precipitates enclosed in austenite during intercritical annealing in a medium Mn steel [J]. Mater. Charact., 2022, 184: 111669
17 Cheng P, Hu B, Liu S L, et al. Influence of retained austenite and Cu precipitates on the mechanical properties of a cold-rolled and intercritically annealed medium Mn steel [J]. Mater. Sci. Eng., 2019, A746: 41
18 Zou Y, Xu Y B, Han D T, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel [J]. Mater. Sci. Eng., 2018, A729: 423
19 Zou Y, Xu Y B, Han D T, et al. Combined contribution of Cu-rich precipitates and retained austenite on mechanical properties of a novel low-carbon medium-Mn steel plate [J]. J. Mater. Sci., 2019, 54: 3438
doi: 10.1007/s10853-018-3021-x
20 Kong H J, Yang T, Chen R, et al. Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions [J]. Scr. Mater., 2020, 186: 213
21 Yan S, Liang T S, Chen J Q, et al. A novel Cu-Ni added medium Mn steel: Precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Mater. Sci. Eng., 2019, A746: 73
22 Chen J, Ren J K, Liu Z Y, et al. 1.0 GPa low carbon medium Mn heavy steel plate with excellent ductility [J]. Mater. Sci. Technol., 2019, 35: 2143
23 Yi H L, Zhang L R, Yu X X, et al. Structure and properties of vanadium microalloyed medium manganese steel [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.), 2016, 44(1): 60
23 衣海龙, 张路冉, 余宣询 等. 钒微合金化中锰钢组织与性能研究 [J]. 华中科技大学学报(自然科学版), 2016, 44(1): 60
24 Mishra G, Chandan A K. Effect of cold deformation extent and ART annealing duration on the microstructure and mechanical properties of a medium manganese steel [J]. Mater. Chem. Phys., 2021, 271: 124940
25 Warren B E. X-ray studies of deformed metals [J]. Prog. Metal Phys., 1959, 8: 147
26 Williamson G K, Smallman R E. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum [J]. Philos. Mag., 1956, 1: 34
27 Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
28 Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. R. Soc. London, 1934, 145A: 362
29 Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
30 Takaki S, Fukunaga K, Syarif J, et al. Effect of grain refinement on thermal stability of metastable austenitic steel [J]. Mater. Trans., 2004, 45: 2245
31 Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel [J]. Metall. Mater. Trans., 2018, 49A: 4404
32 Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
33 Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels [J]. Mater. Des., 2015, 83: 42
34 Hu B, Luo H W. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel [J]. Acta Mater., 2019, 176: 250
35 Luo H W, Qiu C H, Dong H, et al. Experimental and numerical analysis of influence of carbide on austenitisation kinetics in 5Mn TRIP steel [J]. Mater. Sci. Technol., 2014, 30: 1367
36 Ding R, Dai Z B, Huang M X, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel [J]. Acta Mater., 2018, 147: 59
37 Orowan E. Symposium on Internal Stresses in Metals and Alloys [M]. London: Institute of Metals, 1948: 451
38 Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol, 1999, 15: 30
[1] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[2] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[3] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[4] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[5] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[6] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[7] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[8] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[9] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[10] 李龙健, 李仁庚, 张家郡, 曹兴豪, 康慧君, 王同敏. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60(3): 405-416.
[11] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[12] 张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79.
[13] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[14] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[15] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.