Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2023.00410
  本期目录 | 过刊浏览 |
Mn偏析对0.3C-11Mn-2.7Al-1.8Si-Fe中锰钢力学性能影响及作用机制
蔡星周1  刘胜杰1  张禹森1  李小龙1  张宇鹤1  张文彬1  陈 雷1  金 淼1,2

1 燕山大学 机械工程学院  秦皇岛 066004 

2 通裕重工股份有限公司  禹城 251200

Effect of Mn Segregation on Mechanical Properties of 0.3C-11Mn-2.7A1-1.8Si-Fe Medium Mn Steel and Its Mechanism

CAI Xingzhou 1, LIU Shengjie 1, ZHANG Yusen 1, LI Xiaolong 1, ZHANG Yuhe 1, ZHANG Wenbin 1, CHEN Lei 1, JIN Miao 1,2

1 Collenge of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China 

2 Tongyu Heavy Industry Co. Ltd., Yucheng 251200, China

引用本文:

蔡星周 刘胜杰 张禹森 李小龙 张宇鹤 张文彬 陈雷 金淼. Mn偏析对0.3C-11Mn-2.7Al-1.8Si-Fe中锰钢力学性能影响及作用机制[J]. 金属学报, 10.11900/0412.1961.2023.00410.

全文: PDF(2272 KB)  
摘要: 轻质高强中锰钢(含3%~12%Mn,质量分数)是第三代汽车用钢的典型代表,利用其中亚稳奥氏体在塑性变形中的孪晶诱导塑性(TWIP)与相变诱导塑性(TRIP)效应耦合作用,可使其获得优异的强度与塑性。然而,随着Mn含量的提高,特别是Mn > 10%时,中锰钢易出现Mn偏析,对性能产生明显影响。为了探究Mn元素偏析对中锰钢力学性能、微观结构及变形机制的影响,本工作以一种奥氏体基双相中锰钢(0.3C-11Mn-2.7Al-1.8Si-Fe,质量分数,%)为研究对象,对比分析了Mn偏析对显微组织的影响,着重探究了Mn偏析对冷轧退火后中锰钢力学行为的微观作用机制。研究结果表明,Mn偏析使得中锰钢中奥氏体表现出带状分布特征,富Mn偏析带内奥氏体晶粒粗大且稳定性高,铁素体晶粒细小且分布稀疏。塑性变形过程中,无偏析区内奥氏体的主控变形机制为孪晶和马氏体相变,即TRIP + TWIP效应共存,但相变速度较快。富Mn区奥氏体稳定性增加,变形机制虽为马氏体相变,但TRIP效应受限。含富Mn区中锰钢钢与均质非偏析中锰钢钢相比,尽管细晶区域可提供较高的加工硬化能力,但塑性与断裂抗性明显降低。
关键词 中锰钢奥氏体粗晶TRIP/TWIP效应加工硬化Mn偏析    
Abstract

Improvements in passenger safety and fuel efficiency are crucial issues in the automotive industry. The use of advanced high-strength steel (AHSS) in automotive parts has been suggested as a solution to these issues because it enables large weight reduction and good crash worthiness. Strength and ductility are the key mechanical properties of automotive AHSS. However, high strength is often accompanied by low ductility, resulting in the so-called strength–ductility trade-off dilemma. Currently, there is an increasing demand for automotive AHSS that exhibits a balance between strength and ductility. Lightweight and high-strength medium manganese steel (MMnS with a Mn mass fraction of 3%–12%), as a representative example of the third-generation automotive AHSS, has an excellent combination of strength and plasticity due to the effective usage of the coupled transformation-induced plasticity (TRIP) effect and twinning-induced plasticity (TWIP) effect of the metastable austenite constituent upon deformation. To further improve comprehensive mechanical properties, MMnS with a high Mn content were developed to increase the austenite fraction. Thus, a duplex structure with an ultrafine ferrite and austenite matrix was formed. However, Mn segregation is likely to occur in MMnS with increasing Mn content, especially in the cases of Mn 10% (mass fraction), which considerably influences MMnS’s performance. Therefore, the effects of Mn. segregation on the overall mechanical properties, microstructure and deformation mechanism of MMnS need to be elucidated in more details. In this paper, the influence of Mn segregation on the microstructure and mechanical properties of MMnS with an austenite–ferrite duplex structure and a nominal composition of 0.3C–11Mn–2.7Al–1.8Si–Fe was systemically investigated. Specifically, the underlying mechanism of Mn segregation that affects the mechanical and microstructural behavior of cold-rolled and annealed MMnS was analyzed. The results show that Mn segregation causes the formation of a Mn-rich banded structure, where the grain size of austenite is larger, austenite stability is higher, and fine ferrite is distributed more sparsely on the austenite matrix compared with the case without Mn segregation. The dominant plastic deformation mechanism of austenite in the non-Mn segregation zone involves martensitic transformation and twinning, leading to the coupled TRIP + TWIP effect, while the rate of martensitic transformation is higher than those without Mn segregation. However, the martensitic transformation is inhibited in the austenite of the Mn-rich structure because of its higher stability, limiting the TRIP effect. Consequently, the test MMnS with Mn segregation shows lower ductility and fracture resistance than those without Mn segregation; moreover, its finer austenite enhances the work-hardening capacity.

Key wordsmedium Mn steel    coarse-grained austenite    TRIP/TWIP effect    work hardening    Mn segregation
收稿日期: 2023-10-08     
基金资助:国家自然科学基金;国家自然科学基金;河北省自然科学基金;中央引导地方科技发展资金项目;燕山大学基础研究与创新人才培养项目;燕山大学基础研究与创新人才培养项目
[1] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[9] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[10] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[11] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[12] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[13] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.
[14] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[15] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.