|
|
全高丰度稀土(Ce, La, Y)-Fe-B永磁的研究现状和未来发展 |
刘仲武1( ), 周帮1, 廖雪峰1,2, 何家毅1,3 |
1 华南理工大学 材料科学与工程学院 广州 510640 2 广东省科学院资源利用与稀土开发研究所 广东省稀土开发及应用研究重点实验室 广州 510650 3 中国科学院深圳先进技术研究院 材料科学与能源工程学院 深圳 518055 |
|
Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements |
LIU Zhongwu1( ), ZHOU Bang1, LIAO Xuefeng1,2, HE Jiayi1,3 |
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China 2 Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China 3 School of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
引用本文:
刘仲武, 周帮, 廖雪峰, 何家毅. 全高丰度稀土(Ce, La, Y)-Fe-B永磁的研究现状和未来发展[J]. 金属学报, 2024, 60(5): 585-604.
Zhongwu LIU,
Bang ZHOU,
Xuefeng LIAO,
Jiayi HE.
Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements[J]. Acta Metall Sin, 2024, 60(5): 585-604.
1 |
Zhao L Z, He J Y, Li W, et al. Understanding the role of element grain boundary diffusion mechanism in Nd-Fe-B magnets[J]. Adv. Funct. Mater., 2022, 32: 2109529
doi: 10.1002/adfm.v32.8
|
2 |
Liu Z W, He J Y. Several issues on the development of grain boundary diffusion process for Nd-Fe-B permanent magnets[J]. Acta Metall. Sin., 2021, 57: 1155
|
2 |
刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57: 1155
doi: 10.11900/0412.1961.2020.00438
|
3 |
Coey J M D. Perspective and prospects for rare earth permanent magnets[J]. Engineering, 2020, 6: 119
doi: 10.1016/j.eng.2018.11.034
|
4 |
Wu Y C, Gao Z Q, Xu G Q, et al. Current status and challenges in corrosion and protection strategies for sintered NdFeB magnets[J]. Acta Metall. Sin., 2021, 57: 171
doi: 10.11900/0412.1961.2020.00308
|
4 |
吴玉程, 高志强, 徐光青 等. 烧结NdFeB永磁材料腐蚀与防护的研究现状及挑战[J]. 金属学报, 2021, 57: 171
doi: 10.11900/0412.1961.2020.00308
|
5 |
Liu Z W, He J Y, Zhou Q, et al. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets[J]. J. Mater. Sci. Technol., 2022, 98: 51
doi: 10.1016/j.jmst.2021.05.012
|
6 |
Cui J, Kramer M, Zhou L, et al. Current progress and future challenges in rare-earth-free permanent magnets[J]. Acta Mater., 2018, 158: 118
doi: 10.1016/j.actamat.2018.07.049
|
7 |
Shanghai Metals Market. Pricing of rare earth metals[EB/OL]. https://www.metal.com/Rare-Earth-Metals, 2023. 03.01
|
8 |
Yamamoto H, Matsuura Y, Fujimura S, et al. Magnetocrystalline anisotropy of R2Fe14B tetragonal compounds[J]. Appl. Phys. Lett., 1984, 45: 1141
doi: 10.1063/1.95015
|
9 |
Wang H, Lamichhane T N, Paranthaman M P. Review of additive manufacturing of permanent magnets for electrical machines: A prospective on wind turbine[J]. Mater. Today Phys., 2022, 24: 100675
|
10 |
Lei W K, Zeng Q W, Hu X J, et al. Research status and prospect of high abundant rare earth of permanent magnetic materials[J]. Nonferrous Met. Sci. Eng., 2017, 8(5): 1
|
10 |
雷伟凯, 曾庆文, 胡贤君 等. 高丰度稀土永磁材料的研究现状与展望[J]. 有色金属科学与工程, 2017, 8(5): 1
|
11 |
ExplorerMaterials. https://materialsproject.org/materials[EB/OL], 2023. 02.23
|
12 |
Coey J M D. Permanent magnets: Plugging the gap[J]. Scr. Mater., 2012, 67: 524
doi: 10.1016/j.scriptamat.2012.04.036
|
13 |
Kirchmayr H R. Permanent magnets and hard magnetic materials[J]. J. Phys., 1996, 29D: 2763
|
14 |
Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of RE2Fe14B measured on single crystals[J]. J. Appl. Phys., 1986, 59: 873
doi: 10.1063/1.336611
|
15 |
Jin J Y, Zhang Y J, Bai G H, et al. Manipulating Ce valence in RE2Fe14B tetragonal compounds by La-Ce Co-doping: Resultant crystallographic and magnetic anomaly[J]. Sci. Rep., 2016, 6: 30194
doi: 10.1038/srep30194
pmid: 27457408
|
16 |
Tang X, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Ce-Fe-B magnets by grain boundary infiltration of Nd-Cu eutectic alloy[J]. Acta Mater., 2018, 144: 884
doi: 10.1016/j.actamat.2017.10.071
|
17 |
Zhao L Z, Guo W T, Zhang Z Y, et al. Structure, magnetic properties and Mössbauer study of melt-spun nanocrystalline Ce-rich ternary Ce-Fe-B alloy[J]. J. Alloys Compd., 2017, 715: 60
doi: 10.1016/j.jallcom.2017.04.320
|
18 |
Zhao L Z, Zhang X F, Yan M, et al. 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets[J]. Chin. Phys., 2021, 30B: 013302
|
19 |
Zhang Z Y, Zhao L Z, Zhong X C, et al. Phase precipitation behavior of melt-spun ternary Ce2Fe14B alloy during rapid quenching and heat treatment[J]. J. Magn. Magn. Mater., 2017, 441: 429
doi: 10.1016/j.jmmm.2017.06.028
|
20 |
Yan C J, Guo S, Chen R J, et al. Phase constitution and microstructure of Ce-Fe-B strip-casting alloy[J]. Chin. Phys., 2014, 23B: 107501
|
21 |
Grigoras M, Lostun M, Stoian G, et al. Microstructure and magnetic properties of Ce10+ x Fe84- x B6 nanocrystalline ribbons versus preparation conditions[J]. J. Magn. Magn. Mater., 2017, 432: 119
doi: 10.1016/j.jmmm.2017.01.062
|
22 |
Herbst J F, Meyer M S, Pinkerton F E. Magnetic hardening of Ce2Fe14B[J]. J. Appl. Phys., 2012, 111: 07A718
|
23 |
Tan X H, Li H Y, Xu H, et al. A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys[J]. Materials, 2017, 10: 869
doi: 10.3390/ma10080869
|
24 |
Sagawa M, Fujimura S, Yamamoto H, et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds[J]. IEEE Trans. Magn., 1984, 20: 1584
doi: 10.1109/TMAG.1984.1063214
|
25 |
Hadjipanayis G C, Tao Y F, Gudimetta K. Formation of Fe14La2B phase in as-cast and melt-spun samples[J]. Appl. Phys. Lett., 1985, 47: 757
doi: 10.1063/1.96029
|
26 |
Stadelmaier H H, Elmasry N A, Cheng S. Cobalt-free and samarium-free permanent magnet materials based on an iron-rare earth boride[J]. Mater. Lett., 1983, 2: 169
doi: 10.1016/0167-577X(83)90062-9
|
27 |
Wei Q, Lu Z, Yao Q R, et al. Vertical section phase diagrams of La-Fe-B ternary system[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1748
doi: 10.1016/S1003-6326(21)65613-3
|
28 |
Liao X F, Zhang J S, Yu H Y, et al. Understanding the phase structure, magnetic properties and anti-corrosion behavior of melt-spun (La,Y)2Fe14B alloys[J]. J. Magn. Magn. Mater., 2019, 489: 165444
doi: 10.1016/j.jmmm.2019.165444
|
29 |
Zhang Z Y, Zhao L Z, Zhang J S, et al. Phase precipitation behavior of rapidly quenched ternary La-Fe-B alloy and the effects of Nd substitution[J]. Mater. Res. Express, 2017, 4: 086503
|
30 |
Tang W Z, Zhou S Z, Wang R. Preparation and microstructure of La-containing R-Fe-B permanent magnets[J]. J. Appl. Phys., 1989, 65: 3142
doi: 10.1063/1.342711
|
31 |
Wei Q. Study on the phase equlibria of La-Fe-B system and crystal structure and magnetic properties of compound[D]. Guilin: Guilin University of Electronic Technology, 2020
|
31 |
韦 奇. La-Fe-B体系相平衡及化合物晶体结构、性能研究[D]. 桂林: 桂林电子科技大学, 2020
|
32 |
Li Z, Liu W Q, Zha S S, et al. Effects of lanthanum substitution on microstructures and intrinsic magnetic properties of Nd-Fe-B alloy[J]. J. Rare Earths, 2015, 33: 961
doi: 10.1016/S1002-0721(14)60512-3
|
33 |
Hanaki A, Nishio T, Iwama Y. Magnetic properties of Y-Fe-B system alloys[J]. IEEE Transl. J. Magn. Japan, 1985, 1: 1004
|
34 |
Yan A R, Jia Z, Cao S, et al. Research progress and prospect of high abundance rare earth permanent magnet materials[J]. J. Chin. Soc. Rare Earths, 2023, 41: 79
|
34 |
闫阿儒, 贾 智, 曹 帅 等. 高丰度稀土永磁材料的研究进展与展望[J]. 中国稀土学报, 2023, 41: 79
|
35 |
Liu Y T, Fan Y W, Gleb M, et al. Fundamental properties of melt-spun stoichiometric Y2Fe14B alloy and the advantages of Nd substitution[J]. J. Magn. Magn. Mater., 2021, 529: 167898
doi: 10.1016/j.jmmm.2021.167898
|
36 |
Sun L, Li K S, Li H W, et al. Hard magnetic properties of melt-spun nanocomposite Y16Fe78B6 ribbons[J]. Rare Met., 2023, 42: 602
doi: 10.1007/s12598-016-0750-3
|
37 |
Liu Z W, Qian D Y, Zeng D C. Reducing Dy content by Y substitution in nanocomposite ndfeb alloys with enhanced magnetic properties and thermal stability[J]. IEEE Trans. Magn., 2012, 48: 2797
doi: 10.1109/TMAG.2012.2202217
|
38 |
Liao X F, Zhang J S, Yu H Y, et al. Maximizing the hard magnetic properties of melt-spun Ce-La-Fe-B alloys[J]. J. Mater. Sci., 2019, 54: 7288
doi: 10.1007/s10853-019-03387-x
|
39 |
Soeda H, Yanagida M, Yamasaki J, et al. Hard magnetic properties of rapidly quenched (La, Ce)-Fe-B ribbons[J]. IEEE Transl. J. Magn. Japan, 1985, 1: 1006
|
40 |
Liao X F, Zhao L Z, Zhang J S, et al. Clarifying the basic phase structure and magnetic behavior of directly quenched (Ce, La)2Fe14B alloys with various Ce/La ratios[J]. Curr. Appl. Phys., 2019, 19: 733
doi: 10.1016/j.cap.2019.04.002
|
41 |
He J Y, Cao J L, Yu Z G, et al. Grain boundary diffusion sources and their coating methods for Nd-Fe-B permanent magnets[J]. Metals, 2021, 11: 1434
doi: 10.3390/met11091434
|
42 |
Liao X F, Zhang J S, He J Y, et al. Development of cost-effective nanocrystalline multi-component (Ce, La, Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd[J]. J. Mater. Sci. Technol., 2021, 76: 215
doi: 10.1016/j.jmst.2020.11.027
|
43 |
Zhou Q Y, Liu Z, Guo S, et al. Magnetic properties and microstructure of melt-spun Ce-Fe-B magnets[J]. IEEE Trans. Magn., 2015, 51: 2104304
|
44 |
Rehman S U, Jiang Q Z, Liu K, et al. Phase constituents, magnetic properties, intergranular exchange interactions and transition temperatures of Ge-doped CeFeB alloys[J]. J. Phys. Chem. Solids, 2019, 132: 182
doi: 10.1016/j.jpcs.2019.04.033
|
45 |
Jiang Q Z, Zhong M L, Lei W K, et al. Effect of Ga addition on the valence state of Ce and magnetic properties of melt-spun Ce17Fe78 - x B6Ga x (x = 0-1.0) ribbons[J]. AIP Adv., 2017, 7: 085013
|
46 |
Liao X F, Zhang J S, Yu H Y, et al. Exceptional elevated temperature behavior of nanocrystalline stoichiometric Y2Fe14B alloys with La or Ce substitutions[J]. J. Mater. Sci., 2019, 54: 14577
doi: 10.1007/s10853-019-03916-8
|
47 |
Zhang J S, Liao X F, Zhou Q, et al. Enhanced hard-magnetic properties and thermal stability of nanocrystalline Ce-rich Ce-Fe-B alloys by combining La substitution and Si addition[J]. J. Magn. Magn. Mater., 2022, 552: 169217
doi: 10.1016/j.jmmm.2022.169217
|
48 |
Liao X F, Zhang J S, Li W, et al. Performance improvement and element segregation behavior in Y substituted nanocrystalline (La, Ce)-Fe-B permanent magnetic alloys without critical RE elements[J]. J. Alloys Compd., 2020, 834: 155226
doi: 10.1016/j.jallcom.2020.155226
|
49 |
Zhang J S, Liao X F, Xu K, et al. Enhancement in hard magnetic properties of nanocrystalline (Ce, Y)-Fe-Si-B alloys due to microstructure evolution caused by chemical heterogeneity[J]. J. Mater. Chem., 2020, 8C: 14855
|
50 |
Zhao L Z, Li C L, Hao Z P, et al. Influences of element segregation on the magnetic properties in nanocrystalline Nd-Ce-Fe-B alloys[J]. Mater. Charact., 2019, 148: 208
doi: 10.1016/j.matchar.2018.12.022
|
51 |
Jin J Y, Ma T Y, Zhang Y J, et al. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit: Solution to global rare earth criticality[J]. Sci. Rep., 2016, 6: 32200
doi: 10.1038/srep32200
pmid: 27553789
|
52 |
Jin J Y. Structure and performance of La/Ce-rich multi-main-phase RE-Fe-B permanent magnets[D]. Hangzhou: Zhejiang University, 2016
|
52 |
金佳莹. 富La/Ce多主相稀土永磁材料的结构和性能研究[D]. 杭州: 浙江大学, 2016
|
53 |
Liu X B, Altounian Z, Huang M D, et al. The partitioning of La and Y in Nd-Fe-B magnets: A first-principles study[J]. J. Alloys Compd., 2013, 549: 366
doi: 10.1016/j.jallcom.2012.10.056
|
54 |
Fan X D, Ding G F, Chen K, et al. Whole process metallurgical behavior of the high-abundance rare-earth elements LRE (La, Ce and Y) and the magnetic performance of Nd0.75LRE0.25-Fe-B sintered magnets[J]. Acta Mater., 2018, 154: 343
doi: 10.1016/j.actamat.2018.05.046
|
55 |
Zhang J S, Zhao L Z, Liao X F, et al. Suppressing the CeFe2 phase formation and improving the coercivity and thermal stability of Ce-Fe-B alloys by Si substitution[J]. Intermetallics, 2019, 107: 75
doi: 10.1016/j.intermet.2019.01.013
|
56 |
Zhang J S, Li W, Liao X F, et al. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys[J]. J. Mater. Sci. Technol., 2019, 35: 1877
doi: 10.1016/j.jmst.2019.05.007
|
57 |
Li Z B, Zhang M, Shen B G, et al. Variations of phase constitution and magnetic properties with Ce content in Ce-Fe-B permanent magnets[J]. Mater. Lett., 2016, 172: 102
doi: 10.1016/j.matlet.2016.02.149
|
58 |
Ni B J, Xu H, Tan X H, et al. Study on magnetic properties of Ce17Fe78 - x Zr x B6 (x = 0-2.0) alloys[J]. J. Magn. Magn. Mater., 2016, 401: 784
doi: 10.1016/j.jmmm.2015.10.110
|
59 |
Skoug E J, Meyer M S, Pinkerton F E, et al. Crystal structure and magnetic properties of Ce2Fe14 - x Co x B alloys[J]. J. Alloys Compd., 2013, 574: 552
doi: 10.1016/j.jallcom.2013.05.101
|
60 |
Xu K S, Li H W, Luo Y, et al. Experimental and computational study on the phase formation and magnetic properties of Ce-La-Fe-B alloys[J]. J. Magn. Magn. Mater., 2018, 461: 100
doi: 10.1016/j.jmmm.2018.04.058
|
61 |
Liao X F, Zhao L Z, Zhang J S, et al. Enhanced formation of 2:14:1 phase in La-based rare earth-iron-boron permanent magnetic alloys by Nd substitution[J]. J. Magn. Magn. Mater., 2018, 464: 31
doi: 10.1016/j.jmmm.2018.05.041
|
62 |
Chen Z M, Wu Y Q, Kramer M J, et al. A study on the role of Nb in melt-spun nanocrystalline Nd-Fe-B magnets[J]. J. Magn. Magn. Mater., 2004, 268: 105
doi: 10.1016/S0304-8853(03)00481-5
|
63 |
Li R, Shang R X, Xiong J F, et al. Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets[J]. AIP Adv., 2017, 7: 056207
|
64 |
Brown D N, Lau D, Chen Z. Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets[J]. AIP Adv., 2016, 6: 056019
|
65 |
Wu Q, Zhang P Y, Ge H L, et al. Magnetic microstructures and corrosion behaviors of Nd-Fe-B-Ti-C alloy by Ga doping[J]. J. Magn., 2013, 18: 240
doi: 10.4283/JMAG.2013.18.3.240
|
66 |
Nezakat M, Gholamipour R, Amadeh A, et al. Corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5Ti x C x (x = 0, 1.5, 3, 6) nanocomposites annealed melt-spun ribbons[J]. J. Magn. Magn. Mater., 2009, 321: 3391
doi: 10.1016/j.jmmm.2009.06.053
|
67 |
Li W, Li H L, Zhu S J, et al. Simultaneously improved corrosion resistance and magnetic properties of α-Fe/Nd2Fe14B type nanocomposite magnets by interfacial modification[J]. J. Alloys Compd., 2018, 762: 1
doi: 10.1016/j.jallcom.2018.05.137
|
68 |
Jin J Y, Ma T Y, Yan M, et al. Crucial role of the REFe2 intergranular phase on corrosion resistance of Nd-La-Ce-Fe-B sintered magnets[J]. J. Alloys Compd., 2018, 735: 2225
doi: 10.1016/j.jallcom.2017.11.372
|
69 |
Wu Y R, Ni J J, Ma T Y, et al. Corrosion resistance of Nd-Fe-B sintered magnets with intergranular addition of Cu60Zn40 powders[J]. Physica, 2010, 405B: 3303
|
70 |
Cui X G, Yan M, Ma T Y, et al. Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets[J]. Physica, 2008, 403B: 4182
|
71 |
Alam A, Johnson D D. Mixed valency and site-preference chemistry for cerium and its compounds: A predictive density-functional theory study[J]. Phys. Rev., 2014, 89B: 235126
|
72 |
Zhou C Q, Pan M X, Wu Q, et al. Improvement of magnetic properties for Ti doped Ce-Fe-B alloys: Effectively inhibiting CeFe2 phase formation[J]. J. Magn. Magn. Mater., 2020, 502: 166564
doi: 10.1016/j.jmmm.2020.166564
|
73 |
Zhang Y J, Ma T Y, Jin J Y, et al. Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets[J]. Acta Mater., 2017, 128: 22
doi: 10.1016/j.actamat.2017.02.002
|
74 |
Zhou B, Li W, Wen L, et al. Suppressing laves phase and overcoming magnetic properties tradeoff in nanostructured (Ce, La, Y)-Fe-B alloys via Ge substitution[J]. Appl. Phys. Lett., 2023, 123: 051908
|
75 |
Jiang Q Z, He L K, Rehman S U, et al. Permanent magnetic properties of rapidly quenched Ce17Fe78 - x B6 Mx (M = Cu, Al, Ga; x = 0-1.0) alloys[J]. Rare Met. Mater. Eng., 2019, 48: 3686
|
75 |
江庆政, 何伦可, Rehman S U 等. Ce17Fe78 - x B6 Mx (M = Cu, Al, Ga; x=0~1.0)快淬合金永磁性能[J]. 稀有金属材料与工程, 2019, 48: 3686
|
76 |
Tao Y M, Jin J Y, Zhao L Z, et al. Cu-mediated grain boundary engineering in Nd-Ce-Fe-B nanostructured permanent magnets[J]. Mater. Today Nano, 2022, 19: 100230
|
77 |
Siva Kumar M B, Prabhu D, Sadhasivam M, et al. Enhancing the coercivity of Nd-Cu-diffused Nd-Fe-B permanent magnets by Nb-assisted grain boundary pinning[J]. Mater. Res. Lett., 2022, 10: 780
doi: 10.1080/21663831.2022.2104139
|
78 |
Jiang Q Z, Zhong M L, Quan Q C, et al. Striking effect of Hf addition on magnetic properties and thermal stability of Nd13Fe81 - x B6-Hf x (x = 0-1.0) alloys[J]. J. Alloys Compd., 2016, 688: 363
doi: 10.1016/j.jallcom.2016.07.199
|
79 |
Jiang Q Z. Fabrication, microstructure and propertry regulation of nanocrystalline Ce-Fe-B based magnets[D]. Ganzhou: Jiangxi University of Science and Technology, 2018
|
79 |
江庆政. 纳米晶Ce-Fe-B基磁体的制备、结构和性能调控[D]. 赣州: 江西理工大学, 2018
|
80 |
Zha L, Kim C, Yun C, et al. A novel strategy for the fabrication of high-performance nanostructured Ce-Fe-B magnetic materials via electron-beam exposure[J]. Sci. China Mater., 2021, 64: 2519
doi: 10.1007/s40843-020-1650-2
|
81 |
Cui W B, Zhang T B, Zhou X Q, et al. Enhanced coercivity and grain boundary chemistry in diffusion-processed Ce13Fe79B8 ribbons[J]. Mater. Lett., 2017, 191: 210
doi: 10.1016/j.matlet.2016.12.060
|
82 |
Chen K, Guo S, Fan X D, et al. Coercivity enhancement of Ce-Fe-B sintered magnets by low-melting point intergranular additive[J]. J. Rare Earths, 2017, 35: 158
doi: 10.1016/S1002-0721(17)60894-9
|
83 |
Zhang Z Y. The fundamental properties of rapidly quenched Ce/La-Fe-B alloys and the preparation of Nd-Fe-B based permanent magnets[D]. Guangzhou: South China University of Technology, 2017
|
83 |
张振扬. 快淬铈/镧-铁-硼合金的基本特性及钕-铁-硼基永磁体的制备[D]. 广州: 华南理工大学, 2017
|
84 |
Jiang Q Z, He L K, Rehman S U, et al. Microstructure characterization and magnetic characteristics of Ce-Fe-B based spark plasma sintered magnets[J]. IEEE Trans. Magn., 2019, 55: 2101806
|
85 |
Lu Q M, Niu J, Liu W Q, et al. Enhanced magnetic properties of spark plasma sintered (La/Ce)-Fe-B magnets[J]. IEEE Trans. Magn., 2017, 53: 2100603
|
86 |
Fan W B, Zhang J S, Liao X F, et al. Preparation of hot worked dual-main phase Nd-Ce-Fe-B magnets and properties modification by grain boundary diffusion[J]. J. Alloys Compd., 2022, 922: 166021
doi: 10.1016/j.jallcom.2022.166021
|
87 |
Hou Y H, Nie Z H, Yao Y F, et al. Effects of Ce content on microstructure evolution and magnetic properties for hot deformed Ce-Fe-B magnets[J]. Intermetallics, 2022, 148: 107644
doi: 10.1016/j.intermet.2022.107644
|
88 |
Wang R Q, Shen X, Liu Y, et al. Effects of Ga addition on the formability of main phase and microstructure of hot-deformed Ce-Fe-B magnets[J]. IEEE Trans. Magn., 2016, 52: 2101806
|
89 |
Liao X F, Zhao L Z, Zhang J S, et al. Textured (Ce, La, Y)-Fe-B permanent magnets by hot deformation[J]. J. Mater. Res. Technol., 2022, 17: 1459
doi: 10.1016/j.jmrt.2022.01.106
|
90 |
Huang Y L, Li Z H, Ge X J, et al. Microstructure, magnetic anisotropy, plastic deformation, and magnetic properties: The role of Pr-Cu in hot deformed CeFeB magnets[J]. J. Alloys Compd., 2019, 797: 1133
doi: 10.1016/j.jallcom.2019.05.027
|
91 |
Ito M, Yano M, Sakuma N, et al. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring[J]. AIP Adv., 2016, 6: 056029
|
92 |
Wang R Q, Liu Y, Li J, et al. Fabrication of anisotropic NdCeFeB hybrid magnets by hot-deformation: Microstructures and magnetic properties[J]. Mater. Res. Express, 2017, 4: 046104
|
93 |
Jiang Q Z, He L K, Lei W K, et al. Microstructure and magnetic properties of multi-main-phase Ce-Fe-B spark plasma sintered magnets by dual alloy method[J]. J. Magn. Magn. Mater., 2019, 475: 746
doi: 10.1016/j.jmmm.2018.12.041
|
94 |
Chen B, Tang X, Yin W Z, et al. Coercivity enhancement of hot-deformed (Ce, Nd, Pr)-Fe-B magnets by grain boundary diffusion of Pr-Cu alloy[J]. J. Magn. Magn. Mater., 2020, 497: 166002
doi: 10.1016/j.jmmm.2019.166002
|
95 |
Song T T, Li X, Tang X, et al. Effect of Nb doping on microstructure and magnetic properties of hot-deformed Nd-Fe-B magnets with Nd-Cu eutectic diffusion[J]. J. Mater. Sci. Technol., 2022, 122: 121
doi: 10.1016/j.jmst.2021.12.073
|
96 |
Huang Y L, Nie H X, Liu Y Y, et al. Production of anisotropic hot deformed Nd-Fe-B magnets with the addition of Pr-Cu-Al alloy based on nanocomposite ribbon[J]. J. Alloys Compd., 2022, 892: 162072
doi: 10.1016/j.jallcom.2021.162072
|
97 |
Horikawa T, Yamazaki M, Matsuura M, et al. Recent progress in the development of high-performance bonded magnets using rare earth-Fe compounds[J]. Sci. Technol. Adv. Mater., 2021, 22: 729
doi: 10.1080/14686996.2021.1944780
|
98 |
Cao J, Huang Y L, Hou Y H, et al. Microstructure and magnetic properties of MnBi alloys with high coercivity and significant anisotropy prepared by surfactant assisted ball milling[J]. J. Magn. Magn. Mater., 2019, 473: 505
doi: 10.1016/j.jmmm.2018.10.052
|
99 |
Yin X G, Sui Y, Yang Q Q, et al. Preparation and magnetic properties of anisotropic Nd2Fe14B/Sm2Co17 hybrid-bonded magnets[J]. J. Rare Earths, 2019, 37: 1047
doi: 10.1016/j.jre.2019.03.008
|
100 |
Ma B, Sun A Z, Gao X X, et al. Preparation of anisotropic bonded NdFeB/SmFeN hybrid magnets by mixing two different size powders[J]. J. Magn. Magn. Mater., 2018, 457: 70
doi: 10.1016/j.jmmm.2017.11.097
|
101 |
Fukunaga H, Murata H, Yanai T, et al. Prediction method of flux loss in anisotropic NdFeB/SmFeN hybrid magnets[J]. J. Appl. Phys., 2010, 107: 09A736
|
102 |
Zhang D T, Wang P F, Yue M, et al. High-temperature magnetic properties of anisotropic MnBi/NdFeB hybrid bonded magnets[J]. Rare Met., 2016, 35: 471
doi: 10.1007/s12598-015-0668-1
|
103 |
Huang W S, Liao X F, He J Y, et al. Development of bonded (La, Ce, Y)-Fe-B permanent magnets with higher performance/cost ratio than Nd-Fe-B and (Nd, La, Ce)-Fe-B magnets[J]. J. Magn. Magn. Mater., 2022, 559: 169554
doi: 10.1016/j.jmmm.2022.169554
|
104 |
Peng B X, Jin J Y, Liu Y S, et al. Towards peculiar corrosion behavior of multi-main-phase Nd-Ce-Y-Fe-B permanent material with heterogeneous microstructure[J]. Corros. Sci., 2020, 177: 108972
doi: 10.1016/j.corsci.2020.108972
|
105 |
Zhou B, Huang W S, Fan W B, et al. Development of flexible rare earth-Fe-B rubber magnets toward efficient utilization of Ce, La, and Y elements[J]. Adv. Eng. Mater., 2023, 25: 2301329
doi: 10.1002/adem.v25.23
|
106 |
Li S N, Li B Q, Gong L X, et al. Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane[J]. Mater. Des., 2019, 162: 162
doi: 10.1016/j.matdes.2018.11.045
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|