Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 605-615    DOI: 10.11900/0412.1961.2023.00283
  研究论文 本期目录 | 过刊浏览 |
取向硅钢不同常化工艺下组织及抑制剂的变化
杨伟阳1, 黎先浩2, 赵鹏飞1,2, 于海彬2, 赵松山2, 罗海文1()
1 北京科技大学 冶金与生态工程学院 北京 100083
2 首钢智新迁安电磁材料有限公司 迁安 064404
Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes
YANG Weiyang1, LI Xianhao2, ZHAO Pengfei1,2, YU Haibin2, ZHAO Songshan2, LUO Haiwen1()
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Shougang Zhixin Qian'an Electromagnetic Materials Co. Ltd., Qian'an 064404, China
引用本文:

杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
Weiyang YANG, Xianhao LI, Pengfei ZHAO, Haibin YU, Songshan ZHAO, Haiwen LUO. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. Acta Metall Sin, 2024, 60(5): 605-615.

全文: PDF(3580 KB)   HTML
摘要: 

常化是高磁感取向硅钢生产中的重要环节,通常认为通过控制常化工序中900℃开始的缓冷阶段,可实现γα相变来促进抑制剂的弥散析出进而改善磁性能,而本工作在系统研究了高磁感取向硅钢常化工艺中的升温速率、固溶温度、相变等温温度与时间、相变后冷却速率等参数对常化组织和抑制剂的影响后,对此有不同的发现。常化前的初始组织由以珠光体为主的富C片层和片层之间大量分布的铁素体所组成,在常化的加热与固溶过程中,只有碳化物片层区发生奥氏体相变,且提高固溶温度、延长固溶时间可形成更多奥氏体,但在1120℃固溶3 min依然无法完全溶解碳化物且不同区域内所形成奥氏体C浓度不均匀,奥氏体水冷后转变为马氏体和残余奥氏体。组织观察、原位膨胀实验结果与热力学计算结果均表明,在1120℃固溶后冷却至900~950℃相变温度保温时继续发生奥氏体化,而非普遍认为的γα相变,因此此时并不能通过该相变促进抑制剂析出。取向硅钢中细小抑制剂有2种来源:一是在铁素体区域由于降温导致抑制剂形成元素的固溶度下降而析出;二是900℃以下空冷时发生珠光体相变时析出。另外,提高加热速率和固溶温度均可溶解更多已形成的抑制剂,从而可在冷却时再析出更多的细小抑制剂。常化后抑制剂的类型主要为AlN、AlN与MnS的复合析出物及TiN。

关键词 取向硅钢常化组织演变抑制剂相变    
Abstract

Normalizing is an important process that is widely employed in the industrial production of highly permeable grain-oriented silicon steel (GOSS). This is because it yields a proper microstructure, which is subsequently subjected to cold rolling, primary recrystallization, and secondary recrystallization-annealing. As a result, the sharpness Goss texture can be developed and GOSS posseses excellent magnetic properties. In this study, the influence of normalizing process parameters, including the heating rate, solution temperature, second-stage isothermal holding temperature and period for transformation, and cooling rate, on the resultant microstructures and inhibitors in the normalized GOSS were systematically investigated. Two types of distinct regions exist in the hot-rolled GOSS before normalization: the lamellar carbon-riched region elongated along the rolling direction, which is mainly composed of pearlite, and large ferrite region between the former regions. These two regions are alternately distributed from the subsurface to the center of the steel sheet. During heating and the solution processes, austenitization occurs only in the lamellar carbon-riched regions accompanying carbide dissolution, while no transformation occurs in the ferrite regions. An increase in either the solution temperature to up to 1200oC or its period to up to 3 min leads to the formation of more austenite. And the widely adopted solution condition of 1120oC for 3 min cannot dissolve all the formed lamellar carbides in the hot-rolled GOSS, leading to the nonuniform carbon concentration of the formed austenite in different regions. Consequently, some austenite can be retained after most of them transformed into martensite during water quenching. Moreover, all the results on microstructural characterization, in situ dilation experiment, and thermodynamic calculation show that austenitization continues to occur at the second-stage phase transformation temperature (900~950oC), instead of the commonly believed γα phase transformation. Therfore, inhibitor precipitation cannot be promoted by this phase transition. Furthermore, the fine nanosized inhibitors can precipitate in the ferrite region because the inhibitor's solubility is greatly reduced with decreasing temperature and in the pearlite regions accompany with the austenitic-to-pearlite transformation during air cooling below 900oC. An increase in the heating rate and solution temperature cause additional inhibitors in the hot-rolled GOSS to dissolve during the solution stage and reprecipitate to a fine size during the subsequent cooling. After normalization, the main types of inhibitors are AlN, the composite precipitates of AlN and MnS, and TiN.

Key wordsgrain-oriented silicon steel    normalizing    microstructure evolution    inhibitor    phase transformation
收稿日期: 2023-07-02     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51831002);国家自然科学基金项目(52233018);中央高校基本科研业务费项目(FRF-TP-18-002C2)
通讯作者: 罗海文,luohaiwen@ustb.edu.cn,主要从事先进钢铁材料的制备与研究
Corresponding author: LUO Haiwen, professor, Tel: (010)62332911, E-mail: luohaiwen@ustb.edu.cn
作者简介: 杨伟阳,男,1997年生,硕士
图1  高磁感取向硅钢常化工艺示意图
图2  取向硅钢热轧板与常化板的显微组织
图3  不同常化工艺下取向硅钢显微组织的SEM像及残余奥氏体的EBSD质量图和相图叠加图
图4  不同常化工艺下取向硅钢的热膨胀曲线
图5  取向硅钢热轧板中抑制剂的形貌、成分及尺寸分布
图6  取向硅钢常化工艺中不同升温速率下抑制剂的形貌、成分、平均尺寸与数量密度,及尺寸分布
图7  取向硅钢常化工艺中不同固溶温度下抑制剂的形貌、平均尺寸与数量密度,及尺寸分布
图8  取向硅钢常化工艺中不同相变温度、时间和冷速下抑制剂形貌、平均尺寸与数量密度,及尺寸分布
图9  Thermo-Calc计算得到的0.1%Mn-3.25%Si取向硅钢的Fe-C相图
1 Günther K, Abbruzzese G, Fortunati S, et al. Recent technology developments in the production of grain-oriented electrical steel[J]. Steel Res. Int., 2005, 76: 413
doi: 10.1002/srin.2005.76.issue-6
2 Xia Z S, Kang Y L, Wang Q L. Developments in the production of grain-oriented electrical steel[J]. J. Magn. Magn. Mater., 2008, 320: 3229
doi: 10.1016/j.jmmm.2008.07.003
3 Liu G T, Yang P, Mao W M. Effect of final annealing atmosphere on secondary recrystallization behavior in thin gauge medium temperature grain oriented silicon steel[J]. Acta Metall. Sin., 2016, 52: 25
doi: 10.11900/0412.1961.2015.00200
3 刘恭涛, 杨 平, 毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响[J]. 金属学报, 2016, 52: 25
doi: 10.11900/0412.1961.2015.00200
4 Honda K, Kaya S, Masuyama Y. On the magnetic properties of single crystals of iron[J]. Nature, 1926, 117: 753
doi: 10.1038/117753a0
5 Dorner D, Zaefferer S, Lahn L, et al. Overview of microstructure and microtexture development in grain-oriented silicon steel[J]. J. Magn. Magn. Mater., 2006, 304: 183
doi: 10.1016/j.jmmm.2006.02.116
6 Kubota T, Fujikura M, Ushigami Y. Recent progress and future trend on grain-oriented silicon steel[J]. J. Magn. Magn. Mater., 2000, 215-216: 69
doi: 10.1016/S0304-8853(00)00069-X
7 Yang F Y, He C X, Meng L, et al. The effect of annealing atmosphere on the evolution behavior of inhibitors in thin-gauge grain-oriented silicon steel[J]. Mater. Trans., 2017, 58: 1524
doi: 10.2320/matertrans.M2017114
8 Wang Y, Zhu C Y, Li G Q, et al. Effect of decarburisation and nitriding on the carbon content, precipitates, microstructure and texture of Nb-bearing grain-oriented silicon steel[J]. Mater. High Temp., 2020, 37: 155
doi: 10.1080/09603409.2020.1731257
9 Song H Y, Wang Y P, Esling C, et al. The role of grain colony on secondary recrystallization in grain-oriented electrical steel: New insights from an original tracking experiment[J]. Acta Mater., 2021, 206: 116611
doi: 10.1016/j.actamat.2020.116611
10 Liao C C, Hou C K. Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel[J]. J. Magn. Magn. Mater., 2010, 322: 434
doi: 10.1016/j.jmmm.2009.09.072
11 Giri S K, Kundu S, Prakash A, et al. Defining the role of hot band annealing in high-permeability grain-oriented (GO) electrical steel[J]. Metall. Mater. Trans., 2022, 53A: 1873
12 Chang S K. Texture change from primary to secondary recrystallization by hot-band normalizing in grain-oriented silicon steels[J]. Mater. Sci. Eng., 2007, A452-453: 93
13 Li H, Feng Y L, Qi X J, et al. Study on microstructure and precipitates at different normalizing in Fe-3.15%Si low temperature oriented silicon steel[J]. Acta Metall. Sin., 2013, 49: 562
doi: 10.3724/SP.J.1037.2012.00644
13 李 慧, 冯运莉, 齐雪京 等. Fe-3.15%Si低温取向硅钢不同常化工艺下的组织及析出相研究[J]. 金属学报, 2013, 49: 562
14 Liu Y L, Zhu C Y, Jia J, et al. Effect of normalizing annealing temperature on precipitates and texture of Nb-Cr-bearing decarburized grain-oriented silicon steels[J]. Metals, 2019, 9: 457
doi: 10.3390/met9040457
15 Ling C, Xiang L, Qiu S T, et al. Effects of normalizing annealing on grain-oriented silicon steel[J]. J. Iron Steel Res. Int., 2014, 21: 690
doi: 10.1016/S1006-706X(14)60107-2
16 He Z Z, Zhao Y, Luo H W. Electrical Steel[M]. Beijing: Metallurgical Industry Press, 2012: 409
16 何忠治, 赵 宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012: 409
17 Cheng Z Y, Liu J, Yang J X, et al. Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization of Hi-B electrical steel[J]. Indian J. Eng. Mater. Sci., 2016, 23: 165
18 Tsai M C, Hwang Y S. The quenching effects of hot band annealing on grain-oriented electrical steel[J]. J. Magn. Magn. Mater., 2010, 322: 2690
doi: 10.1016/j.jmmm.2010.04.009
19 Fu B, Wang H J, Yan J X, et al. Effects of temperature and alloying elements on γ phase fraction of grain-oriented silicon steel[J]. J. Iron Steel Res. Int., 2016, 23: 573
doi: 10.1016/S1006-706X(16)30090-5
20 Wriedt H A. Solubility product of aluminum nitride in 3 percent silicon iron[J]. Metall. Trans., 1980, 11A: 1731
21 Wang X L, Luo L, Li W Z. Origin of fine equiaxed grains in industrial low-temperature grain-oriented silicon steel normalized sheet and their influence on magnetic properties[J]. J. Magn. Magn. Mater., 2022, 552: 169210
doi: 10.1016/j.jmmm.2022.169210
22 Wang R P, Li S D, Fang Z M, et al. Microstructure and precipitate of low temperature hot rolled HGO silicon steel plate by normalizing[J]. Heat Treat. Met., 2009, 34(6): 9
22 王若平, 黎世德, 方泽民 等. 低温热轧高磁感取向硅钢板常化组织及析出相研究[J]. 金属热处理, 2009, 34(6): 9
23 Giri S K, Durgaprasad A, Thool K, et al. High-temperature flow behaviour of grain-oriented and non-grain-oriented electrical steel[J]. Mater. Sci. Technol., 2019, 35: 1095
doi: 10.1080/02670836.2019.1612594
24 Sakai T, Shiozaki M, Takashina K. A study on AlN in high permeability grain-oriented silicon steel[J]. J. Appl. Phys., 1979, 50: 2369
doi: 10.1063/1.327007
25 Wang H J, Fu B, Xiang L, et al. Nucleation mechanism of precipitate of AlN in ferrite phase of Hi-B steel[J]. J. Iron Steel Res., 2015, 27(10): 40
25 王海军, 付 兵, 项 利 等. AlN在Hi-B钢铁素体相中析出的形核机制[J]. 钢铁研究学报, 2015, 27(10): 40
26 Meng Z B, Zhao Y, He Z Z. Precipitation characteristic of nitride in high-induction grain-oriented silicon steel during normalizing[J]. Spec. Steel, 1999, 20(1): 24
26 蒙肇斌, 赵 宇, 何忠治. 高磁感取向硅钢常化处理过程中氮化物的沉淀[J]. 特殊钢, 1999, 20(1): 24
[1] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[2] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[3] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[11] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[12] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[13] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[14] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[15] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.