|
|
金属3D打印数字化制造研究进展 |
刘壮壮1,2,3( ), 丁明路1,2, 谢建新1,2,3 |
1 北京科技大学 新材料技术研究院 材料先进制备技术教育部重点实验室 北京 100083 2 北京科技大学 新材料技术研究院 现代交通金属材料与加工技术北京实验室 北京 100083 3 北京科技大学 新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083 |
|
Advancements in Digital Manufacturing for Metal 3D Printing |
LIU Zhuangzhuang1,2,3( ), DING Minglu1,2, XIE Jianxin1,2,3 |
1 Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 3 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
Zhuangzhuang LIU,
Minglu DING,
Jianxin XIE.
Advancements in Digital Manufacturing for Metal 3D Printing[J]. Acta Metall Sin, 2024, 60(5): 569-584.
1 |
Zhou J. Intelligent manufacturing—Main direction of "made in China 2025"[J]. China Mech. Eng., 2015, 26: 2273
|
1 |
周 济. 智能制造——"中国制造2025"的主攻方向[J]. 中国机械工程, 2015, 26: 2273
|
2 |
Kolade O, Owoseni A. Employment 5.0: The work of the future and the future of work[J]. Technol. Soc., 2022, 71: 102086
doi: 10.1016/j.techsoc.2022.102086
|
3 |
Zhou J, Zhou Y H, Wang B C, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5: 624
doi: 10.1016/j.eng.2019.07.015
|
4 |
Lu Y Q, Zheng H, Chand S, et al. Outlook on human-centric manufacturing towards Industry 5.0[J]. J. Manuf. Syst., 2022, 62: 612
doi: 10.1016/j.jmsy.2022.02.001
|
5 |
Wang B C, Tao F, Fang X D, et al. Smart manufacturing and intelligent manufacturing: A comparative review[J]. Engineering, 2021, 7: 738
doi: 10.1016/j.eng.2020.07.017
|
6 |
Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing[J]. Engineering, 2018, 4: 11
|
7 |
Zang J Y, Wang B C, Meng L, et al. Brief analysis on three basic paradigms of intelligent manufacturing[J]. Strategic Study CAE, 2018, 20(4): 13
doi: 10.15302/J-SSCAE-2018.04.003
|
7 |
臧冀原, 王柏村, 孟 柳 等. 智能制造的三个基本范式: 从数字化制造, “互联网+”制造到新一代智能制造[J]. 中国工程科学, 2018, 20(4): 13
|
8 |
Osterrieder P, Budde L, Friedli T. The smart factory as a key construct of industry 4.0: A systematic literature review[J]. Int. J. Prod. Econ., 2020, 221: 107476
doi: 10.1016/j.ijpe.2019.08.011
|
9 |
Tao F, Qi Q L. New IT driven service-oriented smart manufacturing: Framework and characteristics[J]. IEEE Trans. Syst. Man. Cybern. Syst., 2019, 49: 81
|
10 |
Tao F, Cheng J F, Qi Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. Int. J. Adv. Manuf. Technol., 2017, 94: 3563
doi: 10.1007/s00170-017-0233-1
|
11 |
Tao F, Zhang M, Cheng J F, et al. Digital twin workshop: A new paradigm for future workshop[J]. Comput. Integr. Manuf. Syst., 2017, 23: 1
|
11 |
陶 飞, 张 萌, 程江峰 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23: 1
|
12 |
Liu R H, Zhang N, Wu Y F. On thinking of constructing an industrial internet security protection system[J]. Cyber Secur. Data Governance, 2018, 37(1): 23
|
12 |
刘仁辉, 张 尼, 吴云峰. 构筑工业互联网安全防护体系 为推动先进制造业发展保驾护航[J]. 信息技术与网络安全, 2018, 37(1): 23
|
13 |
Chowdhury S, Yadaiah N, Prakash C, et al. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling[J]. J. Mater. Res. Technol., 2022, 20: 2109
doi: 10.1016/j.jmrt.2022.07.121
|
14 |
Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities[J]. Mater Today, 2018, 21: 22
doi: 10.1016/j.mattod.2017.07.001
|
15 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
16 |
Hassanin H, Finet L, Cox S C, et al. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels[J]. Addit. Manuf., 2018, 20: 144
|
17 |
Pham M S, Dovgyy B, Hooper P A. Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing[J]. Mater. Sci. Eng., 2017, A704: 102
|
18 |
Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects[J]. Proc. Inst. Mech. Eng, 2015, 229G: 2132
|
19 |
Gao W, Zhang Y B, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Comput. Aided Des., 2015, 69: 65
doi: 10.1016/j.cad.2015.04.001
|
20 |
Sun K, Wei T S, Ahn B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv. Mater., 2013, 25: 4539
doi: 10.1002/adma.v25.33
|
21 |
Guo N N, Leu M C. Additive manufacturing: Technology, applications and research needs[J]. Front. Mech. Eng., 2013, 8: 215
doi: 10.1007/s11465-013-0248-8
|
22 |
Bartolo P, Kruth J P, Silva J, et al. Biomedical production of implants by additive electro-chemical and physical processes[J]. CIRP Ann., 2012, 61: 635
doi: 10.1016/j.cirp.2012.05.005
|
23 |
Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion[J]. Virtual Phys. Prototyp., 2021, 16: 347
doi: 10.1080/17452759.2021.1928520
|
24 |
Torre M, Giannitelli S M, Mauri E, et al. Chapter seven—Additive manufacturing of biomaterials[J]. Adv. Chem. Eng., 2021, 57: 233
|
25 |
Li N, Liu W, Wang Y, et al. Laser additive manufacturing on metal matrix composites: A review[J]. Chin. J. Mech. Eng., 2021, 34: 38
doi: 10.1186/s10033-021-00554-7
|
26 |
Sanjeeviprakash K, Kannan A R, Shanmugam N S. Additive manufacturing of metal-based functionally graded materials: Overview, recent advancements and challenges[J]. J. Braz. Soc. Mech. Sci. Eng., 2023, 45: 241
doi: 10.1007/s40430-023-04174-1
|
27 |
Goetz I K, Kaplan M, Hans M, et al. Reactive metal additive manufacturing: Surface near ZrN-metallic glass composite formation and mechanical properties[J]. Addit. Manuf., 2023, 66: 103457
|
28 |
Guerra C, Ramos-Grez J A, La Fé-Perdomo I, et al. Microstructure and mechanical properties of Cu-11Al-5Ni-4Fe wt% manufactured by LPBF[J]. Metals, 2023, 13: 459
doi: 10.3390/met13030459
|
29 |
Chen Y, Jian Z Y, Ren Y M, et al. Influence of TiB2 volume fraction on SiCp/AlSi10Mg composites by LPBF: Microstructure, mechanical, and physical properties[J]. J. Mater. Res. Technol., 2023, 23: 3697
doi: 10.1016/j.jmrt.2023.02.031
|
30 |
Li C X, Liu Y, Shu T, et al. Effect of solution heat treatment on microstructure, mechanical and electrochemical properties of hastelloy X fabricated by laser powder bed fusion[J]. J. Mater. Res. Technol., 2023, 24: 1499
doi: 10.1016/j.jmrt.2023.03.108
|
31 |
Yang K, Yang X, Zhang Z L, et al. Spall damage in laser-powder-bed-fusion manufactured Ti-6Al-4V: Mechanisms and microstructure effects[J]. J. Alloys Compd., 2023, 947: 169379
doi: 10.1016/j.jallcom.2023.169379
|
32 |
Liu B, Ding Y T, Xu J Y, et al. Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment[J]. Addit. Manuf., 2023, 67: 103491
|
33 |
Guan J R, Wang Q P. Laser powder bed fusion of dissimilar metal materials: A review[J]. Materials, 2023, 16: 2757
doi: 10.3390/ma16072757
|
34 |
Zhang H B, Li J S, Li Y Q. Effect of powder recycling on the organization and mechanical properties of GH4169 alloy by laser metal deposition[J]. Coatings, 2023, 13: 659
doi: 10.3390/coatings13030659
|
35 |
Wu H L, Huang S H, Li Z S, et al. Optimization of microstructure and properties in U75V steel rail cladding layers manufactured by laser melting deposition and laser shock peening[J]. Opt. Laser Technol., 2023, 163: 109436
doi: 10.1016/j.optlastec.2023.109436
|
36 |
Preuß B, Lindner T, Uhlig T, et al. Microstructure evolution and wear resistance of the eutectic high-entropy alloy Al0.3CoCrFeNiNb0.5 produced by laser metal deposition[J]. Coatings, 2023, 13: 585
doi: 10.3390/coatings13030585
|
37 |
Piscopo G, Atzeni E, Saboori A, et al. An overview of the process mechanisms in the laser powder directed energy deposition[J]. Appl. Sci., 2023, 13: 117
doi: 10.3390/app13010117
|
38 |
Ostolaza M, Arrizubieta J I, Lamikiz A, et al. Latest developments to manufacture metal matrix composites and functionally graded materials through AM: A state-of-the-art review[J]. Materials, 2023, 16: 1746
doi: 10.3390/ma16041746
|
39 |
Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: A critical review[J]. Int. J. Adv. Manuf. Technol., 2016, 83: 389
doi: 10.1007/s00170-015-7576-2
|
40 |
Moges T, Ameta G, Witherell P. A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations[J]. J. Manuf. Sci. Eng., 2019, 141: 040801
|
41 |
Razvi S S, Feng S, Narayanan A, et al. A review of machine learning applications in additive manufacturing[A]. Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 1[C]. Anaheim: ASME, 2019, doi: 10.1115/DETC2019-98145
|
42 |
Young Z A, Guo Q L, Parab N D, et al. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process[J]. Addit. Manuf., 2020, 36: 101438
|
43 |
Bahrin M A, Othman M F, Azli N H N, et al. Industry 4.0: A review on industrial automation and robotic[J]. J. Teknol., 2016, 78: 137
|
44 |
Haddara M, Elragal A. The readiness of ERP systems for the factory of the future[J]. Procedia Comput. Sci., 2015, 64: 721
doi: 10.1016/j.procs.2015.08.598
|
45 |
Okano M T. IOT and industry 4.0: the industrial new revolution[A]. International Conference on Management and Information Systems[C]. Bangkok: ICMIS, 2017: 75
|
46 |
Park J, Bae H. Big data and AI for process innovation in the Industry 4.0 era[J]. Appl. Sci., 2022, 12: 6346
doi: 10.3390/app12136346
|
47 |
Mourtzis D, Angelopoulos J, Panopoulos N. Smart manufacturing and tactile internet based on 5G in Industry 4.0: Challenges, applications and new trends[J]. Electronics, 2021, 10: 3175
doi: 10.3390/electronics10243175
|
48 |
Scime L, Beuth J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm[J]. Addit. Manuf., 2018, 19: 114
|
49 |
Sillani F, MacDonald E, Villela J, et al. In-situ monitoring of powder bed fusion of polymers using laser profilometry[J]. Addit. Manuf., 2022, 59: 103074
|
50 |
Bartlett J L, Heim F M, Murty Y V, et al. In situ defect detection in selective laser melting via full-field infrared thermography[J]. Addit. Manuf., 2018, 24: 595
|
51 |
Furumoto T, Ueda T, Alkahari M R, et al. Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera[J]. CIRP Ann., 2013, 62: 223
doi: 10.1016/j.cirp.2013.03.032
|
52 |
Craeghs T, Bechmann F, Berumen S, et al. Feedback control of layerwise laser melting using optical sensors[J]. Phys. Procedia, 2010, 5: 505
doi: 10.1016/j.phpro.2010.08.078
|
53 |
Ito K, Kusano M, Demura M, et al. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement[J]. Addit. Manuf., 2021, 40: 101915
|
54 |
Ren Z S, Gao L, Clark S J, et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion[J]. Science, 2023, 379: 89
doi: 10.1126/science.add4667
pmid: 36603080
|
55 |
Song L J, Huang W K, Han X, et al. Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing[J]. IEEE Trans. Ind. Electron., 2017, 64: 633
doi: 10.1109/TIE.2016.2608318
|
56 |
Farshidianfar M H, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing[J]. Int. J. Adv. Manuf. Technol., 2016, 82: 1173
doi: 10.1007/s00170-015-7423-5
|
57 |
Huang Y Z, Ansari M, Asgari H, et al. Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing)[J]. J. Mater. Process. Technol., 2019, 274: 116286
doi: 10.1016/j.jmatprotec.2019.116286
|
58 |
DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing[J]. Nat. Rev. Mater., 2021, 6: 48
doi: 10.1038/s41578-020-00236-1
|
59 |
Chen H, Zhang Y J, Giam A, et al. Experimental and computational study on thermal and fluid behaviours of powder layer during selective laser melting additive manufacturing[J]. Addit. Manuf., 2022, 52: 102645
|
60 |
Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion[J]. Comput. Mater. Sci., 2018, 150: 304
doi: 10.1016/j.commatsci.2018.04.022
|
61 |
Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing—Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys[J]. Comput. Mater. Sci., 2018, 150: 369
doi: 10.1016/j.commatsci.2018.04.027
|
62 |
Wei H L, Elmer J W, Debroy T. Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy[J]. Acta Mater., 2017, 126: 413
doi: 10.1016/j.actamat.2016.12.073
|
63 |
Zhang Z, Tan Z J, Yao X X, et al. Numerical methods for microstructural evolutions in laser additive manufacturing[J]. Comput. Math. Appl., 2019, 78: 2296
doi: 10.1016/j.camwa.2018.07.011
|
64 |
Li X X, Tan W D. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing[J]. Comput. Mater. Sci., 2018, 153: 159
doi: 10.1016/j.commatsci.2018.06.019
|
65 |
Mukherjee T, DebRoy T. Printability of 316 stainless steel[J]. Sci. Technol. Weld. Joining, 2019, 24: 412
doi: 10.1080/13621718.2019.1607061
|
66 |
Schänzel M, Shakirov D, Ilin A, et al. Coupled thermo-mechanical process simulation method for selective laser melting considering phase transformation steels[J]. Comput. Math. Appl., 2019, 78: 2230
doi: 10.1016/j.camwa.2019.01.019
|
67 |
Chen M M, Shi R H, Liu Z Z, et al. Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718[J]. Int. J. Miner. Metall. Mater., 2023, 30: 2224
doi: 10.1007/s12613-023-2664-z
|
68 |
Yang Y, Knol M F, van Keulen F, et al. A semi-analytical thermal modelling approach for selective laser melting[J]. Addit. Manuf., 2018, 21: 284
|
69 |
Yang Y B, Zhou X, Li Q, et al. A computationally efficient thermo-mechanical model for wire arc additive manufacturing[J]. Addit. Manuf., 2021, 46: 102090
|
70 |
Yang Y, van Keulen F, Ayas C. A computationally efficient thermal model for selective laser melting[J]. Addit. Manuf., 2020, 31: 100955
|
71 |
Kusano M, Miyazaki S, Watanabe M, et al. Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification[J]. Mater. Sci. Eng., 2020, 787A: 139549
|
72 |
Hertlein N, Deshpande S, Venugopal V, et al. Prediction of selective laser melting part quality using hybrid Bayesian network[J]. Addit. Manuf., 2020, 32: 101089
|
73 |
Zhang J J, Wang P, Gao R X. Deep learning-based tensile strength prediction in fused deposition modeling[J]. Comput. Ind., 2019, 107: 11
doi: 10.1016/j.compind.2019.01.011
|
74 |
Raj A, Owen C, Stegman B, et al. Predicting mechanical properties from co-axial melt pool monitoring signals in laser powder bed fusion[J]. J. Manuf. Processes, 2023, 101: 181
doi: 10.1016/j.jmapro.2023.04.083
|
75 |
Estalaki S M, Lough C S, Landers R G, et al. Predicting defects in laser powder bed fusion using in-situ thermal imaging data and machine learning[J]. Addit. Manuf., 2022, 58: 103008
|
76 |
Sah A K, Agilan M, Dineshraj S, et al. Machine learning-enabled prediction of density and defects in additively manufactured Inconel 718 alloy[J]. Mater Today Commun, 2022, 30: 103193
|
77 |
Smoqi Z, Gaikwad A, Bevans B, et al. Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning[J]. J. Mater. Process. Technol., 2022, 304: 117550
doi: 10.1016/j.jmatprotec.2022.117550
|
78 |
Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning[J]. Acta Mater., 2022, 226: 117612
doi: 10.1016/j.actamat.2021.117612
|
79 |
Liu Q, Wu H K, Paul M J, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms[J]. Acta Mater., 2020, 201: 316
doi: 10.1016/j.actamat.2020.10.010
|
80 |
Dastjerdi A A, Movahhedy M R, Akbari J. Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts[J]. Addit. Manuf., 2017, 18: 285
|
81 |
Yu T Y, Mo X D, Chen M J, et al. Machine-learning-assisted microstructure-property linkages of carbon nanotube-reinforced aluminum matrix nanocomposites produced by laser powder bed fusion[J]. Nanotechnol. Rev., 2021, 10: 1410
doi: 10.1515/ntrev-2021-0093
|
82 |
Gan Z T, Li H Y, Wolff S J, et al. Data-driven microstructure and microhardness design in additive manufacturing using a self-organizing map[J]. Engineering, 2019, 5: 730
doi: 10.1016/j.eng.2019.03.014
|
83 |
Silbernagel C, Aremu A, Ashcroft I. Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing[J]. Rapid Prototyp. J., 2020, 26: 625
doi: 10.1108/RPJ-08-2019-0213
|
84 |
Wang R X, Standfield B, Dou C R, et al. Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform[J]. Addit. Manuf., 2023, 66: 103449
|
85 |
Tamir T S, Xiong G, Fang Q H, et al. Machine-learning-based monitoring and optimization of processing parameters in 3D printing[J]. Int. J. Comput. Integr. Manuf., 2023, 36: 1362
doi: 10.1080/0951192X.2022.2145019
|
86 |
Koren O, Shamalov A, Perel N. Small files problem resolution via hierarchical clustering algorithm[J]. Big Data, 2023, doi: 10.1089/big.2022.0181
|
87 |
Kaseb M R, Khafagy M H, Ali I A, et al. An improved technique for increasing availability in big data replication[J]. Future Gener. Comput. Syst., 2019, 91: 493
doi: 10.1016/j.future.2018.08.015
|
88 |
Farkas Z, Kacsuk P, Hajnal A. Connecting workflow-oriented science gateways to multi-cloud systems[A]. 7th International Workshop on Science Gateways[C]. Budapest: IEEE, 2015: 40
|
89 |
Cheng W H, Chiang C I, Yang C T, et al. The Implementation of supporting uniform data distribution with software-dened storage service on heterogeneous cloud storage[A]. 2016 IEEE 22nd International Conference on Parallel and Distributed Systems[C]. Wuhan: IEEE, 2016: 610
|
90 |
Ou Z H, Hwang Z H, Chen F, et al. Is cloud storage ready? A comprehensive study of IP-based storage systems[A]. 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing[C]. Limassol: IEEE, 2015: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|