Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 569-584    DOI: 10.11900/0412.1961.2023.00416
  综述 本期目录 | 过刊浏览 |
金属3D打印数字化制造研究进展
刘壮壮1,2,3(), 丁明路1,2, 谢建新1,2,3
1 北京科技大学 新材料技术研究院 材料先进制备技术教育部重点实验室 北京 100083
2 北京科技大学 新材料技术研究院 现代交通金属材料与加工技术北京实验室 北京 100083
3 北京科技大学 新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083
Advancements in Digital Manufacturing for Metal 3D Printing
LIU Zhuangzhuang1,2,3(), DING Minglu1,2, XIE Jianxin1,2,3
1 Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
Zhuangzhuang LIU, Minglu DING, Jianxin XIE. Advancements in Digital Manufacturing for Metal 3D Printing[J]. Acta Metall Sin, 2024, 60(5): 569-584.

全文: PDF(2427 KB)   HTML
摘要: 

数字化制造将传统的制造过程转化为数字模型,实现对整个制造流程的智能控制,进而快速生产出满足要求的产品。金属3D打印是一个具有多物理场强耦合作用、过程强时变扰动、内禀关系非线性以及多变量与多目标等特点的复杂物理过程,实现金属3D打印全流程的数字化控制,有望解决当前3D打印零件质量一致性和性能稳定性低的瓶颈问题,推动高质量3D打印技术的发展。本文首先分析了金属3D打印的技术特征和数字化制造的基本内涵,随后从3D打印过程数据在线监测、数字化仿真、物理与信息系统交互3个方面综述了金属3D打印数字化制造的研究进展,最后讨论了数字化制造在金属3D打印领域的未来研究重点,展望了发展前景。

关键词 3D打印增材制造机器学习数字化制造    
Abstract

Digital manufacturing revolutionizes conventional manufacturing processes into digital models, enabling intelligent control over the entire production process to rapidly create products tailored to specific requirements. Metal three-dimensional (3D) printing, a complex physical process, is characterized by strong multiphysics interactions, highly time-varying disturbances, intrinsic nonlinear relationships, and multiple variables and objectives. Achieving full-process digital control in metal 3D printing has the potential to overcome current bottlenecks, such as inconsistent part quality and unstable performance, thereby advancing high-quality 3D printing technology. This work investigates metal 3D printing characteristics and fundamental digital manufacturing principles. It subsequently provides an overview of research progress in the digital manufacturing of metal 3D printing, encompassing three critical aspects: online monitoring of the 3D printing process, digital simulation, and the interaction between physical and information systems. Finally, the work discusses the future research focus of digital manufacturing in metal 3D printing, offering insights into its development prospects.

Key words3D printing    additive manufacturing    machine learning    digital manufacturing
收稿日期: 2023-10-18     
ZTFLH:  TG14  
基金资助:国家重点研发计划项目(2022YFB4600302);国家自然科学基金项目(52090041);国家自然科学基金项目(52104368)
通讯作者: 刘壮壮,liuzhuangzhuang@ustb.edu.cn,主要从事增材制造数字化与过程形性智能调控研究
Corresponding author: LIU Zhuangzhuang, associate professor, Tel: (010)62332253, E-mail: liuzhuangzhuang@ustb.edu.cn
作者简介: 刘壮壮,男,1987年生,副教授,博士
图1  激光粉末床熔融(L-PBF)工艺示意图[13]
TypeObjectAdvantageDisadvantage
ProfilometerProfiling of powder bedEasy installationHigh cost
Infrared cameraThermal radiation of molten poolIntuitive results with rich information retrievalHigh resolution, high equipment cost
PyrometerThermal radiation of molten poolHigh accuracy and rapid responseHigh cost
High-speed cameraMolten pool morphology, thermal images, and geometric dimensionsLower cost and extended measurement rangeOptical filters required
Acoustic emissionDefectsHigh sensitivity, nondestructive monitoring, and low costLower accuracy in high-noise conditions
Synchrotron X-rayDynamic behavior of molten poolReal-time observationHigh cost, complex equipment, limited commercial viability
SpectrometerSpatteringWide measurement rangeHigh cost
表1  金属3D打印过程在线监测常用传感器
图2  工业相机监测L-PBF粉末床铺粉质量(绿色表示零件轮廓,其他颜色代表不同缺陷)[48]
图3  L-PBF成型仓内安装的激光轮廓仪示意图[49]
图4  L-PBF成形件表面温度分布在线监控和识别到的缺陷[50]
图5  比色测温仪测量L-PBF过程激光与粉末作用区域表面辐射强度示意图[51]
图6  L-PBF过程单道次扫描实验中样品的截面图像及与声发射传感器波形的对应关系[53]
图7  熔池监测设备及熔池辐射强度分布二维信号处理过程示意图[54]
PurposeModelFeatureApplication
Calculation of heat, mass, and momentum transferPart scale heat conduction modelFourier heat conduction equation is solved either analytically in 1D or 2D or numerically in 3DTemperature fields; fusion zone geometry; cooling rates
Part scale heat transfer and fluid flowSolves 3D transient conservation equations of mass, momentum, and energyTemperature and velocity fields; fusion zone geometry; cooling rates; solidification parameters; lack of fusion
Part scale volume of fluid and level set methodsTracks the free surface of the molten pool; computationally intensive; accumulates errors and the calculated deposit shape and size often do not agree well with experiments3D deposit geometry; temperature and velocity fields; cooling rates; solidification parameters

Powder-scale models

Involves free surface boundary conditions treating thermodynamics, surface tension, phase transitions, and wetting; small timescale and length scale, computationally intensiveTemperature and velocity fields; track geometry; lack of fusion; spatter; surface roughness
Microstructure, nucleation, and grain growth predictionTTT-based, CCT-based, and JMA-based modelsBased on phase transformation kinetics during cooling; widely used for simulating phase transformations in steels and common alloys; high computational efficiency

Solid-state phase transformation kinetics

Monte Carlo methodA probabilistic approach of grain orientation change; provides grain size distribution with time; high computational efficiencyGrain growth; solidification structure; texture
Cellular automataSimulates growth of grain and subgrain structure during solidification; medium accuracy and computational efficiencySolidification structure; grain growth; texture

Phase field model

Simulates microstructural features and properties by calculating an order parameter based on free energy that represents the state of the entire microstructure; computationally intensiveNucleation; grain growth; evolution of phases; precipitate formation; solid-state phase transformation

Calculation of residual stresses and distortion

FEA-based thermomechanical models

Calculation of residual stresses and distortion FEA-based thermomechanical models solves 3D constitutive equations considering elastic, plastic, and thermal behavior; many software packages exist, and these are easy to implement and can handle intricate geometries; adaptive grid and inherent strain method are often used to increase calculation speed

Evolution of residual stress; strains; distortion; delamination; warping

表2  金属增材制造常用数值模拟总结[58]
图8  高温计监测L-PBF成形过程中熔池的辐射数据[77]
图9  机器学习模型预测的高致密度参数窗口[79]
图10  熔融沉积(FDM)多参数闭环控制系统示意图[85]
1 Zhou J. Intelligent manufacturing—Main direction of "made in China 2025"[J]. China Mech. Eng., 2015, 26: 2273
1 周 济. 智能制造——"中国制造2025"的主攻方向[J]. 中国机械工程, 2015, 26: 2273
2 Kolade O, Owoseni A. Employment 5.0: The work of the future and the future of work[J]. Technol. Soc., 2022, 71: 102086
doi: 10.1016/j.techsoc.2022.102086
3 Zhou J, Zhou Y H, Wang B C, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5: 624
doi: 10.1016/j.eng.2019.07.015
4 Lu Y Q, Zheng H, Chand S, et al. Outlook on human-centric manufacturing towards Industry 5.0[J]. J. Manuf. Syst., 2022, 62: 612
doi: 10.1016/j.jmsy.2022.02.001
5 Wang B C, Tao F, Fang X D, et al. Smart manufacturing and intelligent manufacturing: A comparative review[J]. Engineering, 2021, 7: 738
doi: 10.1016/j.eng.2020.07.017
6 Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing[J]. Engineering, 2018, 4: 11
7 Zang J Y, Wang B C, Meng L, et al. Brief analysis on three basic paradigms of intelligent manufacturing[J]. Strategic Study CAE, 2018, 20(4): 13
doi: 10.15302/J-SSCAE-2018.04.003
7 臧冀原, 王柏村, 孟 柳 等. 智能制造的三个基本范式: 从数字化制造, “互联网+”制造到新一代智能制造[J]. 中国工程科学, 2018, 20(4): 13
8 Osterrieder P, Budde L, Friedli T. The smart factory as a key construct of industry 4.0: A systematic literature review[J]. Int. J. Prod. Econ., 2020, 221: 107476
doi: 10.1016/j.ijpe.2019.08.011
9 Tao F, Qi Q L. New IT driven service-oriented smart manufacturing: Framework and characteristics[J]. IEEE Trans. Syst. Man. Cybern. Syst., 2019, 49: 81
10 Tao F, Cheng J F, Qi Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. Int. J. Adv. Manuf. Technol., 2017, 94: 3563
doi: 10.1007/s00170-017-0233-1
11 Tao F, Zhang M, Cheng J F, et al. Digital twin workshop: A new paradigm for future workshop[J]. Comput. Integr. Manuf. Syst., 2017, 23: 1
11 陶 飞, 张 萌, 程江峰 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23: 1
12 Liu R H, Zhang N, Wu Y F. On thinking of constructing an industrial internet security protection system[J]. Cyber Secur. Data Governance, 2018, 37(1): 23
12 刘仁辉, 张 尼, 吴云峰. 构筑工业互联网安全防护体系 为推动先进制造业发展保驾护航[J]. 信息技术与网络安全, 2018, 37(1): 23
13 Chowdhury S, Yadaiah N, Prakash C, et al. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling[J]. J. Mater. Res. Technol., 2022, 20: 2109
doi: 10.1016/j.jmrt.2022.07.121
14 Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities[J]. Mater Today, 2018, 21: 22
doi: 10.1016/j.mattod.2017.07.001
15 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
16 Hassanin H, Finet L, Cox S C, et al. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels[J]. Addit. Manuf., 2018, 20: 144
17 Pham M S, Dovgyy B, Hooper P A. Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing[J]. Mater. Sci. Eng., 2017, A704: 102
18 Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects[J]. Proc. Inst. Mech. Eng, 2015, 229G: 2132
19 Gao W, Zhang Y B, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Comput. Aided Des., 2015, 69: 65
doi: 10.1016/j.cad.2015.04.001
20 Sun K, Wei T S, Ahn B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv. Mater., 2013, 25: 4539
doi: 10.1002/adma.v25.33
21 Guo N N, Leu M C. Additive manufacturing: Technology, applications and research needs[J]. Front. Mech. Eng., 2013, 8: 215
doi: 10.1007/s11465-013-0248-8
22 Bartolo P, Kruth J P, Silva J, et al. Biomedical production of implants by additive electro-chemical and physical processes[J]. CIRP Ann., 2012, 61: 635
doi: 10.1016/j.cirp.2012.05.005
23 Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion[J]. Virtual Phys. Prototyp., 2021, 16: 347
doi: 10.1080/17452759.2021.1928520
24 Torre M, Giannitelli S M, Mauri E, et al. Chapter seven—Additive manufacturing of biomaterials[J]. Adv. Chem. Eng., 2021, 57: 233
25 Li N, Liu W, Wang Y, et al. Laser additive manufacturing on metal matrix composites: A review[J]. Chin. J. Mech. Eng., 2021, 34: 38
doi: 10.1186/s10033-021-00554-7
26 Sanjeeviprakash K, Kannan A R, Shanmugam N S. Additive manufacturing of metal-based functionally graded materials: Overview, recent advancements and challenges[J]. J. Braz. Soc. Mech. Sci. Eng., 2023, 45: 241
doi: 10.1007/s40430-023-04174-1
27 Goetz I K, Kaplan M, Hans M, et al. Reactive metal additive manufacturing: Surface near ZrN-metallic glass composite formation and mechanical properties[J]. Addit. Manuf., 2023, 66: 103457
28 Guerra C, Ramos-Grez J A, La Fé-Perdomo I, et al. Microstructure and mechanical properties of Cu-11Al-5Ni-4Fe wt% manufactured by LPBF[J]. Metals, 2023, 13: 459
doi: 10.3390/met13030459
29 Chen Y, Jian Z Y, Ren Y M, et al. Influence of TiB2 volume fraction on SiCp/AlSi10Mg composites by LPBF: Microstructure, mechanical, and physical properties[J]. J. Mater. Res. Technol., 2023, 23: 3697
doi: 10.1016/j.jmrt.2023.02.031
30 Li C X, Liu Y, Shu T, et al. Effect of solution heat treatment on microstructure, mechanical and electrochemical properties of hastelloy X fabricated by laser powder bed fusion[J]. J. Mater. Res. Technol., 2023, 24: 1499
doi: 10.1016/j.jmrt.2023.03.108
31 Yang K, Yang X, Zhang Z L, et al. Spall damage in laser-powder-bed-fusion manufactured Ti-6Al-4V: Mechanisms and microstructure effects[J]. J. Alloys Compd., 2023, 947: 169379
doi: 10.1016/j.jallcom.2023.169379
32 Liu B, Ding Y T, Xu J Y, et al. Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment[J]. Addit. Manuf., 2023, 67: 103491
33 Guan J R, Wang Q P. Laser powder bed fusion of dissimilar metal materials: A review[J]. Materials, 2023, 16: 2757
doi: 10.3390/ma16072757
34 Zhang H B, Li J S, Li Y Q. Effect of powder recycling on the organization and mechanical properties of GH4169 alloy by laser metal deposition[J]. Coatings, 2023, 13: 659
doi: 10.3390/coatings13030659
35 Wu H L, Huang S H, Li Z S, et al. Optimization of microstructure and properties in U75V steel rail cladding layers manufactured by laser melting deposition and laser shock peening[J]. Opt. Laser Technol., 2023, 163: 109436
doi: 10.1016/j.optlastec.2023.109436
36 Preuß B, Lindner T, Uhlig T, et al. Microstructure evolution and wear resistance of the eutectic high-entropy alloy Al0.3CoCrFeNiNb0.5 produced by laser metal deposition[J]. Coatings, 2023, 13: 585
doi: 10.3390/coatings13030585
37 Piscopo G, Atzeni E, Saboori A, et al. An overview of the process mechanisms in the laser powder directed energy deposition[J]. Appl. Sci., 2023, 13: 117
doi: 10.3390/app13010117
38 Ostolaza M, Arrizubieta J I, Lamikiz A, et al. Latest developments to manufacture metal matrix composites and functionally graded materials through AM: A state-of-the-art review[J]. Materials, 2023, 16: 1746
doi: 10.3390/ma16041746
39 Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: A critical review[J]. Int. J. Adv. Manuf. Technol., 2016, 83: 389
doi: 10.1007/s00170-015-7576-2
40 Moges T, Ameta G, Witherell P. A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations[J]. J. Manuf. Sci. Eng., 2019, 141: 040801
41 Razvi S S, Feng S, Narayanan A, et al. A review of machine learning applications in additive manufacturing[A]. Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 1[C]. Anaheim: ASME, 2019, doi: 10.1115/DETC2019-98145
42 Young Z A, Guo Q L, Parab N D, et al. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process[J]. Addit. Manuf., 2020, 36: 101438
43 Bahrin M A, Othman M F, Azli N H N, et al. Industry 4.0: A review on industrial automation and robotic[J]. J. Teknol., 2016, 78: 137
44 Haddara M, Elragal A. The readiness of ERP systems for the factory of the future[J]. Procedia Comput. Sci., 2015, 64: 721
doi: 10.1016/j.procs.2015.08.598
45 Okano M T. IOT and industry 4.0: the industrial new revolution[A]. International Conference on Management and Information Systems[C]. Bangkok: ICMIS, 2017: 75
46 Park J, Bae H. Big data and AI for process innovation in the Industry 4.0 era[J]. Appl. Sci., 2022, 12: 6346
doi: 10.3390/app12136346
47 Mourtzis D, Angelopoulos J, Panopoulos N. Smart manufacturing and tactile internet based on 5G in Industry 4.0: Challenges, applications and new trends[J]. Electronics, 2021, 10: 3175
doi: 10.3390/electronics10243175
48 Scime L, Beuth J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm[J]. Addit. Manuf., 2018, 19: 114
49 Sillani F, MacDonald E, Villela J, et al. In-situ monitoring of powder bed fusion of polymers using laser profilometry[J]. Addit. Manuf., 2022, 59: 103074
50 Bartlett J L, Heim F M, Murty Y V, et al. In situ defect detection in selective laser melting via full-field infrared thermography[J]. Addit. Manuf., 2018, 24: 595
51 Furumoto T, Ueda T, Alkahari M R, et al. Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera[J]. CIRP Ann., 2013, 62: 223
doi: 10.1016/j.cirp.2013.03.032
52 Craeghs T, Bechmann F, Berumen S, et al. Feedback control of layerwise laser melting using optical sensors[J]. Phys. Procedia, 2010, 5: 505
doi: 10.1016/j.phpro.2010.08.078
53 Ito K, Kusano M, Demura M, et al. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement[J]. Addit. Manuf., 2021, 40: 101915
54 Ren Z S, Gao L, Clark S J, et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion[J]. Science, 2023, 379: 89
doi: 10.1126/science.add4667 pmid: 36603080
55 Song L J, Huang W K, Han X, et al. Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing[J]. IEEE Trans. Ind. Electron., 2017, 64: 633
doi: 10.1109/TIE.2016.2608318
56 Farshidianfar M H, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing[J]. Int. J. Adv. Manuf. Technol., 2016, 82: 1173
doi: 10.1007/s00170-015-7423-5
57 Huang Y Z, Ansari M, Asgari H, et al. Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing)[J]. J. Mater. Process. Technol., 2019, 274: 116286
doi: 10.1016/j.jmatprotec.2019.116286
58 DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing[J]. Nat. Rev. Mater., 2021, 6: 48
doi: 10.1038/s41578-020-00236-1
59 Chen H, Zhang Y J, Giam A, et al. Experimental and computational study on thermal and fluid behaviours of powder layer during selective laser melting additive manufacturing[J]. Addit. Manuf., 2022, 52: 102645
60 Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion[J]. Comput. Mater. Sci., 2018, 150: 304
doi: 10.1016/j.commatsci.2018.04.022
61 Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing—Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys[J]. Comput. Mater. Sci., 2018, 150: 369
doi: 10.1016/j.commatsci.2018.04.027
62 Wei H L, Elmer J W, Debroy T. Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy[J]. Acta Mater., 2017, 126: 413
doi: 10.1016/j.actamat.2016.12.073
63 Zhang Z, Tan Z J, Yao X X, et al. Numerical methods for microstructural evolutions in laser additive manufacturing[J]. Comput. Math. Appl., 2019, 78: 2296
doi: 10.1016/j.camwa.2018.07.011
64 Li X X, Tan W D. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing[J]. Comput. Mater. Sci., 2018, 153: 159
doi: 10.1016/j.commatsci.2018.06.019
65 Mukherjee T, DebRoy T. Printability of 316 stainless steel[J]. Sci. Technol. Weld. Joining, 2019, 24: 412
doi: 10.1080/13621718.2019.1607061
66 Schänzel M, Shakirov D, Ilin A, et al. Coupled thermo-mechanical process simulation method for selective laser melting considering phase transformation steels[J]. Comput. Math. Appl., 2019, 78: 2230
doi: 10.1016/j.camwa.2019.01.019
67 Chen M M, Shi R H, Liu Z Z, et al. Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718[J]. Int. J. Miner. Metall. Mater., 2023, 30: 2224
doi: 10.1007/s12613-023-2664-z
68 Yang Y, Knol M F, van Keulen F, et al. A semi-analytical thermal modelling approach for selective laser melting[J]. Addit. Manuf., 2018, 21: 284
69 Yang Y B, Zhou X, Li Q, et al. A computationally efficient thermo-mechanical model for wire arc additive manufacturing[J]. Addit. Manuf., 2021, 46: 102090
70 Yang Y, van Keulen F, Ayas C. A computationally efficient thermal model for selective laser melting[J]. Addit. Manuf., 2020, 31: 100955
71 Kusano M, Miyazaki S, Watanabe M, et al. Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification[J]. Mater. Sci. Eng., 2020, 787A: 139549
72 Hertlein N, Deshpande S, Venugopal V, et al. Prediction of selective laser melting part quality using hybrid Bayesian network[J]. Addit. Manuf., 2020, 32: 101089
73 Zhang J J, Wang P, Gao R X. Deep learning-based tensile strength prediction in fused deposition modeling[J]. Comput. Ind., 2019, 107: 11
doi: 10.1016/j.compind.2019.01.011
74 Raj A, Owen C, Stegman B, et al. Predicting mechanical properties from co-axial melt pool monitoring signals in laser powder bed fusion[J]. J. Manuf. Processes, 2023, 101: 181
doi: 10.1016/j.jmapro.2023.04.083
75 Estalaki S M, Lough C S, Landers R G, et al. Predicting defects in laser powder bed fusion using in-situ thermal imaging data and machine learning[J]. Addit. Manuf., 2022, 58: 103008
76 Sah A K, Agilan M, Dineshraj S, et al. Machine learning-enabled prediction of density and defects in additively manufactured Inconel 718 alloy[J]. Mater Today Commun, 2022, 30: 103193
77 Smoqi Z, Gaikwad A, Bevans B, et al. Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning[J]. J. Mater. Process. Technol., 2022, 304: 117550
doi: 10.1016/j.jmatprotec.2022.117550
78 Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning[J]. Acta Mater., 2022, 226: 117612
doi: 10.1016/j.actamat.2021.117612
79 Liu Q, Wu H K, Paul M J, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms[J]. Acta Mater., 2020, 201: 316
doi: 10.1016/j.actamat.2020.10.010
80 Dastjerdi A A, Movahhedy M R, Akbari J. Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts[J]. Addit. Manuf., 2017, 18: 285
81 Yu T Y, Mo X D, Chen M J, et al. Machine-learning-assisted microstructure-property linkages of carbon nanotube-reinforced aluminum matrix nanocomposites produced by laser powder bed fusion[J]. Nanotechnol. Rev., 2021, 10: 1410
doi: 10.1515/ntrev-2021-0093
82 Gan Z T, Li H Y, Wolff S J, et al. Data-driven microstructure and microhardness design in additive manufacturing using a self-organizing map[J]. Engineering, 2019, 5: 730
doi: 10.1016/j.eng.2019.03.014
83 Silbernagel C, Aremu A, Ashcroft I. Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing[J]. Rapid Prototyp. J., 2020, 26: 625
doi: 10.1108/RPJ-08-2019-0213
84 Wang R X, Standfield B, Dou C R, et al. Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform[J]. Addit. Manuf., 2023, 66: 103449
85 Tamir T S, Xiong G, Fang Q H, et al. Machine-learning-based monitoring and optimization of processing parameters in 3D printing[J]. Int. J. Comput. Integr. Manuf., 2023, 36: 1362
doi: 10.1080/0951192X.2022.2145019
86 Koren O, Shamalov A, Perel N. Small files problem resolution via hierarchical clustering algorithm[J]. Big Data, 2023, doi: 10.1089/big.2022.0181
87 Kaseb M R, Khafagy M H, Ali I A, et al. An improved technique for increasing availability in big data replication[J]. Future Gener. Comput. Syst., 2019, 91: 493
doi: 10.1016/j.future.2018.08.015
88 Farkas Z, Kacsuk P, Hajnal A. Connecting workflow-oriented science gateways to multi-cloud systems[A]. 7th International Workshop on Science Gateways[C]. Budapest: IEEE, 2015: 40
89 Cheng W H, Chiang C I, Yang C T, et al. The Implementation of supporting uniform data distribution with software-dened storage service on heterogeneous cloud storage[A]. 2016 IEEE 22nd International Conference on Parallel and Distributed Systems[C]. Wuhan: IEEE, 2016: 610
90 Ou Z H, Hwang Z H, Chen F, et al. Is cloud storage ready? A comprehensive study of IP-based storage systems[A]. 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing[C]. Limassol: IEEE, 2015: 1
[1] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[2] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[3] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[7] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[8] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[11] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[12] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[13] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[14] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[15] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.