Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 243-252    DOI: 10.11900/0412.1961.2023.00268
  研究论文 本期目录 | 过刊浏览 |
间隙元素OβTi-15Mo合金超低温力学性能的影响
戴进财1, 闵小华1(), 辛社伟2, 刘凤金1
1 大连理工大学 材料科学与工程学院 大连 116024
2 西北有色金属研究院 西安 710016
Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy
DAI Jincai1, MIN Xiaohua1(), XIN Shewei2, LIU Fengjin1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
引用本文:

戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
Jincai DAI, Xiaohua MIN, Shewei XIN, Fengjin LIU. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. Acta Metall Sin, 2025, 61(2): 243-252.

全文: PDF(3731 KB)   HTML
摘要: 

O元素会影响亚稳β型钛合金的塑性变形方式,从而影响合金的低温力学性能。利用HRTEM、FIB、EBSD、SEM、OM和配备了低温系统的电子万能试验机等研究了2种不同O含量(0.2%和0.4%,质量分数)的β型Ti-15Mo合金(分别命名为0.2O和0.4O合金)在20 K下的拉伸力学性能。结果表明,20 K下,0.2O合金具有较好的抗拉强度(1825 MPa)和延伸率(7.5%)匹配,呈现典型的微孔聚集型断裂特征;而0.4O合金具有高的抗拉强度(1973 MPa),但延伸率较低(1.5%),呈现典型的解理断裂特征。2者超低温力学性能的差异主要取决于O含量对{332}<113>孪晶形成的影响,前者中形成了大量孪晶,而后者仅在断口附近产生了少量孪晶。0.2O合金高的强度归因于{332}<113>孪生的临界分切应力大幅提高,而较高的延伸率则是因为大量孪晶的产生阻碍了局部塑性变形。此外,该合金的拉伸曲线呈现典型的锯齿状特征,并且拉伸试样出现了多处缩颈。缩颈区域产生的孪晶阻碍了局部塑性变形的进行,进一步提高了强塑性匹配。因此,有效利用间隙元素O能够调控亚稳β型钛合金的超低温力学性能。

关键词 β型钛合金超低温{332}<113>孪生O含量微观组织断口形貌力学性能    
Abstract

Ti and titanium alloys are preferred for cryogenic applications, particularly at a liquid hydrogen temperature of 20 K, in aerospace due to their high specific strength, good corrosion resistance, low magnetic permeability, and low thermal expansion coefficient. Currently, the most common cryogenic titanium alloys are extra-low interstitial α-type and near α-type alloys. However, they exhibit inadequate age hardening and low cold-forming ability. Furthermore, they do not meet the enhanced strength-ductility requirements for cryogenic structural components. Metastable β-type titanium alloys with a {332}<113> twinning-induced plasticity (TWIP) effect have shown enhanced mechanical properties, such as a favorable balance of strength-ductility at ambient and cryogenic temperatures. Therefore, they are considered promising titanium alloy candidates for cryogenic applications. The content of interstitial elements, particularly the O content, has a substantial impact on the cryogenic ductility of titanium alloys. Therefore, all cryogenic titanium alloys have extremely rigorous requirements regarding the O content. However, the effect of O content on the cryogenic tensile behavior of {332}<113> TWIP alloys remains unclear. This study investigated the cryogenic tensile behavior of Ti-15Mo alloy with O contents of 0.2% and 0.4% (mass fraction, the same below) at 20 K. The tests were conducted using HRTEM, FIB, EBSD, SEM, OM, and a tensile testing machine fitted with a cryogenic system. Results show that the alloy comprising 0.2%O content (0.2O alloy) exhibits a good combination of tensile strength (1825 MPa) and elongation (7.5%). This alloy displays typical microvoid coalescence fracture characteristics. Alternatively, the alloy with 0.4%O content (0.4O alloy) presents a high tensile strength of 1973 MPa, a relatively low elongation of 1.5%, and typical cleavage fracture characteristics. The discrepancy in cryogenic tensile properties between the two alloys can be attributed to the effect of O content on the formation of {332}<113> twins. Several {332}<113> twins appear in the 0.2O alloy, whereas only a small number of twins are observed near the fracture region in the 0.4O alloy. The exceptional strength of the 0.2O alloy is attributed to the enhanced critically resolved shear stress of twinning, while the impressive elongation is attributed to the formation of numerous twins that impede local plastic deformation. The 0.2O alloy exhibits a noticeably serrated tensile curve and multiple necking. The activation of twins in the necking region hinders local plastic deformation and necking, thus enhancing the strength-ductility combination. Hence, by effectively using the interstitial element O, the cryogenic mechanical properties of metastable β-type titanium alloys can be effectively tailored as per requirements.

Key wordsβ-type titanium alloy    cryogenic temperature    {332}<113> twinning    O content    microstructure    fracture morphology    mechanical property
收稿日期: 2023-06-25     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52071051);西安市高性能钛合金材料重点实验室(重点);(Key) Foundation of Xi'an Key Laboratory of High-Performance Titanium Alloy
通讯作者: 闵小华,minxiaohua@dlut.edu.cn,主要从事高性能钛合金研究
Corresponding author: MIN Xiaohua, professor, Tel: (0411)84708189, E-mail: minxiaohua@dlut.edu.cn
作者简介: 戴进财,男,1995年生,博士
图1  拉伸试样尺寸以及拉断试样的组织形貌观察位置示意图
图2  0.2O和0.4O合金经20 K处理后原始组织的OM像及TEM分析
图3  0.2O和0.4O合金于20 K下的拉伸载荷-位移曲线及拉断试样宏观照片
图4  0.2O和0.4O合金于20 K下拉伸后断口的SEM像
图5  0.2O合金于20 K下拉伸后均匀变形区域和缩颈区域的变形组织
图6  0.4O合金于20 K下拉伸后断口附近的变形组织
图7  0.2O、0.4O合金和其他钛合金[2,7,9,11,15,28~31]在20 K下的拉伸性能
1 Xu A J, Wan H F, Liang C Z, et al. Application status and development trend of cryogenic titanium alloy [J]. J. Netshape Form. Eng., 2020, 12(6): 145
1 许爱军, 万海峰, 梁春祖 等. 低温钛合金材料应用现状及发展趋势 [J]. 精密成形工程, 2020, 12(6): 145
2 Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45: 254
2 黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 254
3 Osamu U. Review of the mechanical properties of high-strength alloys at cryogenic temperatures [J]. Mater. Perform. Charact., 2021, 10: 3
4 Yu Y, Jiang P, Li S K. Recent advances in the development and application of cryogenic titanium alloys [J]. Dev. Appl. Mater., 2014, 29(6): 118
4 郁 炎, 蒋 鹏, 李士凯. 国内外低温钛合金的开发与应用现状 [J]. 材料开发与应用, 2014, 29(6): 118
5 Leyens C, Peters M. Titanium and titanium alloys [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 36
6 Lei L, Zhao Q Y, Zhu Q W, et al. Twinning-induced high impact toughness of titanium alloy at cryogenic temperature [J]. Mater. Sci. Eng., 2022, A860: 144258
7 Lu Z C, Zhang X H, Ji W, et al. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures [J]. Mater. Sci. Eng., 2021, A818: 141380
8 Nayan N, Singh G, Prabhu T A, et al. Cryogenic mechanical properties of warm multi-pass caliber-rolled fine-grained titanium alloys: Ti-6Al-4V (normal and ELI grades) and VT14 [J]. Metall. Mater. Trans., 2018, 49A: 128
9 Singh G, Bajargan G, Datta R, et al. Deformation and strength of Ti-6Al-4V alloyed with B at cryogenic temperatures [J]. Mater. Sci. Eng., 2014, A611: 45
10 Lu Z C, Sun Y C, Yao C G, et al. Microstructure and mechanical properties of novel Ti-Al-V-Zr-Mo-Nb cryogenic titanium alloy [J]. Rare Met. Mater. Eng., 2022, 51: 217
10 陆子川, 孙亚超, 姚草根 等. 一种新型Ti-Al-V-Zr-Mo-Nb低温钛合金组织与性能研究 [J]. 稀有金属材料与工程, 2022, 51: 217
11 Zang M C, Niu H Z, Zhang H R, et al. Cryogenic tensile properties and deformation behavior of a superhigh strength metastable beta titanium alloy Ti-15Mo-2Al [J]. Mater. Sci. Eng., 2021, A817: 141344
12 Xiang L, Min X H, Mi G B. Application and research progress of body-centered-cubic Ti-Mo base alloys [J]. J. Mater. Eng., 2017, 45(7): 128
doi: 10.11868/j.issn.1001-4381.2016.000737
12 向 力, 闵小华, 弭光宝. 体心立方Ti-Mo基钛合金应用研究进展 [J]. 材料工程, 2017, 45(7): 128
13 Zhang S J, Min X H, Li Y D, et al. Effects of deformation and phase transformation microstructures on springback behavior and biocompatibility in β-Type Ti-15Mo alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 621
14 Dai J C, Min X H, Zhou K S, et al. Coupling effect of pre-strain combined with isothermal ageing on mechanical properties in a multilayered Ti-10Mo-1Fe/3Fe alloy [J]. Acta Metall. Sin., 2021, 57: 767
14 戴进财, 闵小华, 周克松 等. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能 [J]. 金属学报, 2021, 57: 767
doi: 10.11900/0412.1961.2020.00286
15 Yao K, Xin S W, Yang Y, et al. Ultrahigh cryogenic strength and exceptional ductility at 20 K in a TWIP Ti-15Mo alloy [J]. Scr. Mater., 2022, 213: 114595
16 Chong Y, Poschmann M, Zhang R P, et al. Mechanistic basis of oxygen sensitivity in titanium [J]. Sci. Adv., 2020, 6: 4060
17 Wasz M L, Brotzen F R, Mclellan R B, et al. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium [J]. Int. Mater. Rev., 1996, 41: 1
18 Min X H, Emura S, Tsuchiya K, et al. Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition [J]. Mater. Sci. Eng., 2014, A590: 88
19 Min X H, Bai P F, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy [J]. Mater. Sci. Eng., 2017, A684: 534
20 Kim J I, Kim H Y, Hosoda H, et al. Shape memory behavior of Ti-22Nb-(0.5-2.0)O (at%) biomedical alloys [J]. Mater. Trans., 2005, 46: 852
21 Min X H, Xiang L, Li M J, et al. Effect of {332}<113> twins combined with isothermal ω-phase on mechanical properties in Ti-15Mo alloy with different oxygen contents [J]. Acta Metall. Sin., 2018, 54: 1262
21 闵小华, 向 力, 李明佳 等. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响 [J]. 金属学报, 2018, 54: 1262
doi: 10.11900/0412.1961.2018.00022
22 Yao K, Min X H. Abnormal strain rate strengthening and strain hardening with constitutive modeling in body-centered cubic {332}<113> TWIP titanium alloy [J]. Acta Mater., 2022, 226: 117641
23 Li M J, Min X H, Yao K, et al. Novel insight into the formation of α″-martensite and ω-phase with cluster structure in metastable Ti-Mo alloys [J]. Acta Mater., 2019, 164: 322
24 Wang K G, Deng Z X, Tian Y Y, et al. Effect of cold rolling and solution treatment on β stability and mechanical properties of a metastable β-Ti alloy [J]. Mater. Sci. Eng., 2022, A861: 144366
25 Yao K, Min X H, Emura S, et al. Coupling effect of deformation mode and temperature on tensile properties in TWIP type Ti-Mo alloy [J]. Mater. Sci. Eng., 2019, A766: 138363
26 Qu L, Yang Y, Lu Y F, et al. A detwinning process of {332}<113> twins in beta titanium alloys [J]. Scr. Mater., 2013, 69: 389
27 Gutierrez-Urrutia I, Li C L, Emura S, et al. Study of {332}<113> twinning in a multilayered Ti-10Mo-xFe (x = 1-3) alloy by ECCI and EBSD [J]. Sci. Technol. Adv. Mater., 2016, 17: 220
28 Boyer R, Collings E W, Welsch G. Materials Properties Handbook: Titanium Alloys [M]. Materials Park: ASM International, 1994: 68
29 Zang M C, Niu H Z, Liu S, et al. Achieving highly promising strength-ductility synergy of powder bed fusion additively manufactured titanium alloy components at ultra-low temperatures [J]. Addit. Manuf., 2023, 65: 103444
30 Antony Prabhu T, Murugesan N, Thomas Tharian K, et al. Studies on mechanical properties of Ti-6Al-4V ELI at liquid hydrogen temperature [J]. Mater. Sci. Forum, 2015, 830-831: 207
31 Di iorio S, Briottet L, Rauch E F, et al. Plastic deformation, damage and rupture of PM Ti-6Al-4V at 20 K under monotonic loading [J]. Acta Mater., 2007, 55: 105
32 Hanada S, Izumi O. Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys [J]. Metall. Trans., 1986, 17A: 1409
[1] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[2] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[3] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[4] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[5] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[6] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[7] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[8] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[9] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[10] 孟泽, 李光强, 李腾飞, 郑庆, 曾斌, 刘昱. Ce75Cr1钢洁净度、组织与耐点蚀性能的影响[J]. 金属学报, 2024, 60(9): 1229-1238.
[11] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[12] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[13] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[14] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[15] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.