|
|
CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为 |
朱满( ), 张成, 许军锋, 坚增运, 惠增哲 |
西安工业大学 材料与化工学院 西安 710021 |
|
Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys |
ZHU Man( ), ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe |
School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China |
引用本文:
朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
Man ZHU,
Cheng ZHANG,
Junfeng XU,
Zengyun JIAN,
Zengzhe XI.
Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. Acta Metall Sin, 2025, 61(1): 88-98.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
3 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
|
4 |
Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K[J]. Acta Mater., 2020, 182: 235
|
5 |
Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
|
6 |
Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 Eutectic high-entropy alloy at elevated temperature[J]. Acta Metall. Sin., 2023, 59: 267
|
6 |
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
|
7 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
|
8 |
Liu N, Ding W, Wang X J, et al. Microstructure evolution and phase formation of Fe25Ni25Co x Mo y multi-principal-component alloys[J]. Metall. Mater. Trans., 2020, 51A: 2990
|
9 |
Jia Y H, Wang Z J, Wu Q F, et al. Boron microalloying for high-temperature eutectic high-entropy alloys[J]. Acta Mater., 2024, 262: 119427
|
10 |
Pei X H, Du Y, Wang H M, et al. Investigation of high temperature tribological performance of TiZrV0.5Nb0.5 refractory high-entropy alloy optimized by Si microalloying[J]. Tribol. Int., 2022, 176: 107885
|
11 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
|
12 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
|
13 |
Xu C R, Fang L Y, Xu G L, et al. Mechanical properties and oxidation behavior of NbMoTaW x refractory high entropy alloys[J]. J. Alloys Compd., 2024, 990: 174390
|
14 |
Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis[J]. Acta Mater., 2013, 61: 1545
|
15 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review[J]. J. Mater. Res., 2018, 33: 3092
|
16 |
Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCr x NbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys[J]. J. Alloys Compd., 2015, 652: 266
|
17 |
Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Mater. Sci. Eng., 2013, A565: 51
|
18 |
Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)[J]. J. Alloys Compd., 2017, 729: 1004
|
19 |
Yurchenko NY, Stepanov N D, Zherebtsov S V, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 0-1.5) high-entropy alloys[J]. Mater. Sci. Eng., 2017, A704: 82
|
20 |
Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAl x (0.25 ≤ x ≤ 1.25) eutectic refractory high-entropy alloy[J]. Mater. Lett., 2020, 272: 127869
|
21 |
Qiao D X, Liang H, Wu S Y, et al. The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Al x refractory high-entropy alloys[J]. Mater. Charact., 2021, 178: 111287
|
22 |
Dong Z Q, Sun A K, Yang S, et al. Machine learning-assisted discovery of Cr, Al-containing high-entropy alloys for high oxidation resistance[J]. Corros. Sci., 2023, 220: 111222
|
23 |
Anber E A, Beaudry D, Brandenburg C, et al. Oxidation resistance of Al-containing refractory high-entropy alloys[J]. Scr. Mater., 2024, 244: 115997
|
24 |
Lu S D, Li X X, Liang X Y, et al. Effect of Al content on the oxidation behavior of refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures[J]. Int. J. Refract. Met. Hard Mater., 2022, 105: 105812
|
25 |
Zhang Y Y, Wu H B, Yu X P, et al. Role of Cr in the high-temperature oxidation behavior of Cr x MnFeNi high-entropy alloys at 800 oC in air[J]. Corros. Sci., 2022, 200: 110211
|
26 |
Li Z, Wang L, Wang B B, et al. Oxidation behavior of Ti-Nb-Mo-Al-Si x refractory high entropy alloy at 1000 oC[J]. Corros. Sci., 2022, 206: 110504
|
27 |
Guo Y L, Peng J, Peng S Y, et al. Improving oxidation resistance of TaMoZrTiAl refractory high entropy alloys via Nb and Si alloying[J]. Corros. Sci., 2023, 223: 111455
|
28 |
Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300 oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum[J]. Adv. Eng. Mater., 2018, 20: 1700948
|
29 |
Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on structure and mechanical properties of Al x NbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys[J]. Mater. Sci. Technol., 2015, 31: 1184
|
30 |
Liu X W, Bai Z C, Ding X F, et al. A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability[J]. Mater. Lett., 2021, 287: 129255
|
31 |
Jiang W T, Wang X H, Li S Y, et al. A lightweight Al0.8Nb0.5Ti2V2Zr0.5 refractory high entropy alloy with high specific yield strength[J]. Mater. Lett., 2022, 328: 133144
|
32 |
Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Mater., 2014, 68: 214
|
33 |
Wagner C. Beitrag zur theorie des anlaufvorgangs[J]. Z. Phys. Chem., 1933, 21B: 25
|
34 |
Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys[J]. J. Alloys Compd., 2014, 583: 162
|
35 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. J. Appl. Phys., 2011, 109: 103505
|
36 |
Yurchenko N, Stepanov N, Salishchev G. Laves-phase formation criterion for high-entropy alloys[J]. Mater. Sci. Technol., 2017, 33: 17
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|