Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 88-98    DOI: 10.11900/0412.1961.2024.00201
  研究论文 本期目录 | 过刊浏览 |
CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为
朱满(), 张成, 许军锋, 坚增运, 惠增哲
西安工业大学 材料与化工学院 西安 710021
Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys
ZHU Man(), ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe
School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
引用本文:

朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
Man ZHU, Cheng ZHANG, Junfeng XU, Zengyun JIAN, Zengzhe XI. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. Acta Metall Sin, 2025, 61(1): 88-98.

全文: PDF(3641 KB)   HTML
摘要: 

难熔高熵合金(RHEAs)具有高热稳定性、良好的高温力学性能和优异的高温抗氧化性能,有望作为一种潜在的耐高温结构材料使用。为了降低RHEAs密度、改善其高温抗氧化性能,本工作向CrNbTiV合金中添加Al元素,制备了一系列CrNbTiVAl x (x = 0.25、0.5、0.75、1.0)难熔高熵合金。采用XRD、SEM、EDS和电子万能试验机等手段研究Al含量对CrNbTiV难熔高熵合金微观组织、力学性能和高温氧化行为的影响规律。结果表明,CrNbTiVAl x 合金的微观组织由bcc、Laves和α-Ti相组成,bcc相以等轴晶形式分布。随着Al含量的增加,合金的密度逐渐减小,屈服强度由2037 MPa降低至1371 MPa;比屈服强度由CrNbTiVAl0.75合金的215.93 MPa·cm3/g增加至CrNbTiVAl0.25合金的323.33 MPa·cm3/g。CrNbTiVAl x 合金在900 ℃氧化时的氧化动力学遵循抛物线规律,增加Al含量有利于提高合金的高温抗氧化性能。CrNbTiVAl x 合金氧化后的氧化产物是由Al2O3、(CrNbTiVAl)O2和VO x 组成的混合结构。当Al含量较低时,合金表面形成的连续、紧密的复杂氧化物(CrNbTiVAl)O2有效阻止了O2向基体内的扩散。随着Al含量的增加,复杂氧化物(CrNbTiVAl)O2含量减少,表面形成了更加致密、连续且细小的Al2O3氧化膜,从而显著提高了合金的高温抗氧化性能。

关键词 难熔高熵合金组织力学性能高温抗氧化性能    
Abstract

Owing to their high thermal stability, good high-temperature mechanical properties, and excellent high-temperature oxidation resistance, refractory high-entropy alloys (RHEAs) are strong candidates for structural materials in high-temperature applications. To reduce the density and improve the high-temperature oxidation resistance of RHEAs, in this study, the Al element was added into CrNbTiV alloys, forming a series of CrNbTiVAl x RHEAs (x = 0.25, 0.5, 0.75, 1.0). The effects of Al content on the microstructure, mechanical properties, and high-temperature oxidation behaviors of the CrNbTiV RHEAs were studied using XRD, SEM, EDS, and an electronic universal testing machine. A mixture of bcc, Laves, and α-Ti phases was found in the CrNbTiVAl x RHEAs and equiaxed grains were observed in the bcc phase. Increasing the Al content decreased the density of the alloys and reduced the yield strength from 2037 to 1371 MPa. The specific yield strength ranged from 215.93 MPa·cm3/g in CrNbTiVAl0.75 to 323.33 MPa·cm3/g in CrNbTiVAl0.25. After oxidation at 900 oC, the CrNbTiVAl x RHEAs exhibited parabolic oxidation kinetics and their high-temperature oxidation resistance was improved due to increased Al content. The oxidized products were determined as Al2O3, (CrNbTiVAl)O2, and VO x. The surfaces of the alloys with low Al content formed a continuous and compact complex oxide (CrNbTiVAl)O2 that effectively prevented the diffusion of O2 into the substrate. Increasing the Al content decreased the amount of complex oxide (CrNbTiVAl)O2, forming denser, continuous, and finer Al2O3 oxides on the surface that appreciably improved the high-temperature oxidation resistance.

Key wordsrefractory high-entropy alloy    microstructure    mechanical property    high-temperature oxidation resistance
收稿日期: 2024-06-18     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(51971166);国家自然科学基金项目(51904218)
通讯作者: 朱 满,zhuman0428@126.com,主要从事高熵合金及强韧化研究
Corresponding author: ZHU Man, professor, Tel: (029)86173324, E-mail: zhuman0428@126.com
作者简介: 朱 满,男,1982年生,博士
图1  CrNbTiVAl x 难熔高熵合金的XRD谱
图2  CrNbTiVAl x 难熔高熵合金微观组织的背散射电子(BSE)像
AlloyRegionCrNbTiVAl
Al0.25Nominal23.5323.5323.5323.535.88
bcc27.3227.2410.5529.005.89
Laves30.9725.1911.3325.966.54
α-Ti00.2305.4090.2903.960.12
Al0.50Nominal22.2222.2222.2222.2211.12
bcc33.2922.5816.1418.7609.23
Laves33.4123.6414.5019.6208.84
α-Ti00.4504.6790.9603.4800.13
Al0.75Nominal21.0521.0521.0521.0515.80
bcc21.2222.9917.4023.4814.91
Laves30.4420.2816.6522.0210.62
α-Ti00.4505.3989.3004.5300.34
Al1.0Nominal2020202020
bcc20.5219.6219.8420.0819.06
Laves31.2718.3317.6320.3812.39
α-Ti00.1103.4693.1003.0400.29
表1  CrNbTiVAl x 难熔高熵合金不同区域的EDS结果 (atomic fraciton / %)
图3  CrNbTiVAl x 难熔高熵合金的室温压缩应力-应变曲线
Alloy

σ0.2

MPa

σf

MPa

εf

%

ρ

g·cm-3

SYS

MPa·cm3·g-1

Al0.252037213112.356.30323.33
Al0.51917201214.506.09314.78
Al0.751274131406.165.90215.93
Al1.01371139806.655.73239.27
表2  CrNbTiVAl x 难熔高熵合金的压缩性能、密度和比屈服强度
图4  CrNbTiVAl x 难熔高熵合金及其他典型高熵合金[12,16,17,20,29~32]的比屈服强度与密度的对比
图5  CrNbTiVAl x 难熔高熵合金900 ℃时的氧化动力学曲线
Alloyt / hkp1 / (mg2·cm-4·s-1)R2t / hkp2 / (mg2·cm-4·s-1)R2
Al0.250-401.98 × 10-10.9440-1002.90 × 10-20.97
Al0.50-401.43 × 10-10.9640-1005.31 × 10-20.97
Al0.750-408.81 × 10-20.9340-1007.23 × 10-20.98
Al1.00-405.71 ×10-20.9440-1008.91 × 10-20.99
表3  CrNbTiVAl x 难熔高熵合金900 ℃高温氧化的抛物线速率常数
图6  CrNbTiVAl x 难熔高熵合金在900 ℃氧化不同时间后的XRD谱
图7  CrNbTiVAl x 难熔高熵合金900 ℃氧化100 h后的表面形貌
AlloySpotIdentified phaseCrNbTiVAlO
Al0.251(CrNbTiVAl)O210.0511.3710.1304.3802.2861.79
2VO x03.6103.0904.7116.3801.2770.94
3Al2O304.0500.5800.3701.2533.6160.14
Al0.54(CrNbTiVAl)O209.159.6011.3503.6403.1263.14
5Al2O304.350.0600.4300.2334.9859.95
Al0.756VO x03.352.8704.0815.5001.3972.81
7(CrNbTiVAl)O207.338.9409.8403.1604.5366.20
8Al2O303.390.6100.9501.8536.0257.18
Al1.09(CrNbTiVAl)O215.1115.2216.9603.4502.6346.63
10Al2O303.6500.0000.0700.6233.3162.35
表4  CrNbTiVAl x 难熔高熵合金900 ℃氧化100 h后不同区域(图7)的EDS结果 (atomic fraction / %)
图8  CrNbTiVAl x 难熔高熵合金900 ℃氧化10 h后横截面的形貌及其对应面扫描结果
AlloyΔHmix / (kJ·mol-1)ΔSmix / (J·K-1·mol-1)Ωδ / %VECΔχA / %
Al0.250-7.8612.713.525.944.887.16
Al0.5-10.6713.152.605.814.777.13
Al0.75-12.8513.332.125.694.697.08
Al1.0-14.5613.381.835.574.607.03
表5  CrNbTiVAl x 难熔高熵合金的典型热力学参数
图9  CrNbTiVAl x 合金中不同氧化物的标准Gibbs自由能与温度之间关系
图10  CrNbTiVAl x 难熔高熵合金高温氧化过程示意图
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
2 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
3 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
4 Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K[J]. Acta Mater., 2020, 182: 235
5 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
6 Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 Eutectic high-entropy alloy at elevated temperature[J]. Acta Metall. Sin., 2023, 59: 267
6 苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
7 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
8 Liu N, Ding W, Wang X J, et al. Microstructure evolution and phase formation of Fe25Ni25Co x Mo y multi-principal-component alloys[J]. Metall. Mater. Trans., 2020, 51A: 2990
9 Jia Y H, Wang Z J, Wu Q F, et al. Boron microalloying for high-temperature eutectic high-entropy alloys[J]. Acta Mater., 2024, 262: 119427
10 Pei X H, Du Y, Wang H M, et al. Investigation of high temperature tribological performance of TiZrV0.5Nb0.5 refractory high-entropy alloy optimized by Si microalloying[J]. Tribol. Int., 2022, 176: 107885
11 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
12 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
13 Xu C R, Fang L Y, Xu G L, et al. Mechanical properties and oxidation behavior of NbMoTaW x refractory high entropy alloys[J]. J. Alloys Compd., 2024, 990: 174390
14 Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis[J]. Acta Mater., 2013, 61: 1545
15 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review[J]. J. Mater. Res., 2018, 33: 3092
16 Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCr x NbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys[J]. J. Alloys Compd., 2015, 652: 266
17 Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Mater. Sci. Eng., 2013, A565: 51
18 Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)[J]. J. Alloys Compd., 2017, 729: 1004
19 Yurchenko NY, Stepanov N D, Zherebtsov S V, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 0-1.5) high-entropy alloys[J]. Mater. Sci. Eng., 2017, A704: 82
20 Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAl x (0.25 ≤ x ≤ 1.25) eutectic refractory high-entropy alloy[J]. Mater. Lett., 2020, 272: 127869
21 Qiao D X, Liang H, Wu S Y, et al. The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Al x refractory high-entropy alloys[J]. Mater. Charact., 2021, 178: 111287
22 Dong Z Q, Sun A K, Yang S, et al. Machine learning-assisted discovery of Cr, Al-containing high-entropy alloys for high oxidation resistance[J]. Corros. Sci., 2023, 220: 111222
23 Anber E A, Beaudry D, Brandenburg C, et al. Oxidation resistance of Al-containing refractory high-entropy alloys[J]. Scr. Mater., 2024, 244: 115997
24 Lu S D, Li X X, Liang X Y, et al. Effect of Al content on the oxidation behavior of refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures[J]. Int. J. Refract. Met. Hard Mater., 2022, 105: 105812
25 Zhang Y Y, Wu H B, Yu X P, et al. Role of Cr in the high-temperature oxidation behavior of Cr x MnFeNi high-entropy alloys at 800 oC in air[J]. Corros. Sci., 2022, 200: 110211
26 Li Z, Wang L, Wang B B, et al. Oxidation behavior of Ti-Nb-Mo-Al-Si x refractory high entropy alloy at 1000 oC[J]. Corros. Sci., 2022, 206: 110504
27 Guo Y L, Peng J, Peng S Y, et al. Improving oxidation resistance of TaMoZrTiAl refractory high entropy alloys via Nb and Si alloying[J]. Corros. Sci., 2023, 223: 111455
28 Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300 oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum[J]. Adv. Eng. Mater., 2018, 20: 1700948
29 Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on structure and mechanical properties of Al x NbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys[J]. Mater. Sci. Technol., 2015, 31: 1184
30 Liu X W, Bai Z C, Ding X F, et al. A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability[J]. Mater. Lett., 2021, 287: 129255
31 Jiang W T, Wang X H, Li S Y, et al. A lightweight Al0.8Nb0.5Ti2V2Zr0.5 refractory high entropy alloy with high specific yield strength[J]. Mater. Lett., 2022, 328: 133144
32 Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Mater., 2014, 68: 214
33 Wagner C. Beitrag zur theorie des anlaufvorgangs[J]. Z. Phys. Chem., 1933, 21B: 25
34 Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys[J]. J. Alloys Compd., 2014, 583: 162
35 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. J. Appl. Phys., 2011, 109: 103505
36 Yurchenko N, Stepanov N, Salishchev G. Laves-phase formation criterion for high-entropy alloys[J]. Mater. Sci. Technol., 2017, 33: 17
[1] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[2] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[3] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[4] 王志军, 白晓昱, 王健斌, 姜慧, 焦文娜, 李天昕, 卢一平. 共晶高熵合金十年发展回顾(20142024):设计、制备与应用[J]. 金属学报, 2025, 61(1): 1-11.
[5] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[6] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[7] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[8] 夏兴川, 张恩宽, 丁俭, 王玉江, 刘永长. 激光熔覆难熔高熵合金涂层研究进展[J]. 金属学报, 2025, 61(1): 59-76.
[9] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[10] 张瑶, 齐敏, 孙佳, 吴婷, 马英杰, 王皞, 杨锐. 3D相场模拟研究Ti-6Al-4V合金片层组织形貌的影响因素[J]. 金属学报, 2024, 60(9): 1265-1278.
[11] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[12] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[13] 白如圣, 谭毅, 崔弘阳, 宁莉丹, 崔传勇, 王云鹏, 李鹏廷. 电子束熔炼功率对GH4068合金微观组织、偏析和 γ相析出行为的影响[J]. 金属学报, 2024, 60(9): 1189-1199.
[14] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[15] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.