Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 875-886    DOI: 10.11900/0412.1961.2023.00330
  研究论文 本期目录 | 过刊浏览 |
固溶时效对激光沉积修复ZM6合金组织及力学性能的影响
钦兰云1, 张健1, 伊俊振2,3(), 崔岩峰4, 杨光1(), 王超3
1 沈阳航空航天大学 机电工程学院 沈阳 110136
2 沈阳航空航天大学 材料科学与工程学院 沈阳 110136
3 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室 沈阳 110136
4 中国航发哈尔滨东安发动机有限公司 哈尔滨 150066
Effects of Solution Aging on Microstructural Evolution and Mechanical Properties of Laser Deposition Repairing ZM6 Alloy
QIN Lanyun1, ZHANG Jian1, YI Junzhen2,3(), CUI Yanfeng4, YANG Guang1(), WANG Chao3
1 School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
3 Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
4 AECC Harbin Dongan Engine Co. Ltd., Harbin 150066, China
引用本文:

钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
Lanyun QIN, Jian ZHANG, Junzhen YI, Yanfeng CUI, Guang YANG, Chao WANG. Effects of Solution Aging on Microstructural Evolution and Mechanical Properties of Laser Deposition Repairing ZM6 Alloy[J]. Acta Metall Sin, 2025, 61(6): 875-886.

全文: PDF(6064 KB)   HTML
摘要: 

为了提高镁合金航空构件修复质量、延长服役寿命,本工作针对航空镁合金构件的冶金缺陷及服役损伤开展了ZM6合金激光沉积修复研究,对比分析了固溶时效(T6:520 ℃、8 h + 220 ℃、14 h)处理前后修复试样微观组织及力学性能的变化。结果表明,沉积态试样修复区组织由细小的α-Mg相和第二相组成,第二相主要以连续网状分布在晶界处,少量以点状及棒状分布在晶粒内部。修复区平均硬度为(60 ± 2) HV0.1,修复试样的抗拉强度、屈服强度和延伸率分别为137.47 MPa、111.61 MPa和5.57%,其断裂位置在基材部分,断裂模式为沿晶-穿晶混合的脆性断裂;经T6处理后,修复区组织由细小的α-Mg晶粒和异常粗大晶粒组成,且晶粒内部析出了β′相。T6处理后试样修复区的平均硬度提高17.5%,异常粗大晶粒和细小晶粒导致硬度波动范围较大,抗拉强度和屈服强度分别提升了49.8%和75.6%,但延伸率有所下降。拉伸试样断裂位置在修复区,异常粗大晶粒是引起断裂的主要原因。

关键词 激光沉积修复ZM6合金固溶时效异常粗大晶粒力学性能    
Abstract

ZM6 (Mg-Nd-Zn-Zr) alloy is a typical casting magnesium alloy with low density, high specific strength and stiffness, good vibration damping performance, good machinability, and good heat resistance. It is widely used in aerospace and aviation fields. However, metallurgical or machining defects are inevitable while processing due to the complicated shapes and large scales of aviation components. Failure to repair them may lead to significant economic loss. Laser deposition repair can be applied to aerospace components because of the advantages of small heat input and high molding accuracy. This work focuses on repairing the aerospace ZM6 magnesium alloy components using laser deposition, addressing the metallurgical defects and service damage to the components. The changes in the microstructure and mechanical properties of the repaired ZM6 samples before and after solution aging (T6: 520 oC, 8 h + 220 oC, 14 h) treatment were compared. The results show that the microstructure of the repaired zone of the as-deposited sample consists of fine α-Mg grains. The secondary phases distributed mainly at grain boundaries showed a continuous network, and a small number of the dot- and rod-shaped secondary phases were distributed inside Mg grains. The average hardness of the repaired zone is (60 ± 2) HV0.1, and the tensile strength, yield strength, and elongation were 137.47 MPa, 111.61 MPa, and 5.57%, respectively. The fracture occurred in the base metal, and the tensile fracture mode comprised transgranular and intergranular brittle fractures. After T6 treatment, the microstructure of the repaired zone comprised fine α-Mg grains and abnormally coarse grains, and β′ phase was precipitated inside the grains. The average hardness of the repaired zone increased by 17.5% compared to that of the as-deposited samples, and the abnormally coarse and fine grains led to various hardness fluctuations. The tensile strength and yield strength of the T6-treated samples increased by 49.8% and 75.6%, respectively, but the elongation decreased. The fracture location of the tensile sample was in the repaired zone because of the formation of abnormally coarse grains.

Key wordslaser deposition repairing    ZM6 alloy    solution aging    abnormally coarse grain    mechanical property
收稿日期: 2023-08-10     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2022YFE0122600);中国航空发动机集团产学研合作项目(HFZL2021CXY025-1);辽宁省教育厅基金项目(JYT2020061);沈阳航空航天大学航空制造工艺数字化国防重点学科实验室开放基金项目(SHSYS202001)
通讯作者: 伊俊振,jzyi@sau.edu.cn,主要从事激光沉积制造、激光沉积修复方面的研究;
杨 光,yangguang@sau.edu.cn,主要从事金属激光沉积制造方面的研究
Corresponding author: YI Junzhen, associate professor, Tel: 18004024448, E-mail: jzyi@sau.edu.cn;
YANG Guang, professor, Tel: 18040037100, E-mail: yangguang@sau.edu.cn
作者简介: 钦兰云,女,1977年生,教授,博士
图1  ZM6合金基材及梯形凹槽尺寸示意图
图2  激光沉积制造系统示意图
图3  激光沉积修复(LDR)过程及拉伸试样的取样位置和尺寸示意图
图4  ZM6合金基材的OM像、晶粒尺寸分布、SEM像及EDS分析
图5  LDR试样的OM像、低/高倍下熔合线附近的SEM像、修复区晶粒尺寸分布和EDS分析
图6  LDR-T6试样熔合线附近的OM像、修复区晶粒尺寸分布、SEM像及EDS分析
图7  LDR与LDR-T6试样修复区的XRD谱
图8  LDR与LDR-T6试样不同区域的显微硬度分布
图9  基材、LDR与LDR-T6试样的工程应力-应变曲线、断裂位置及室温拉伸性能
图10  LDR与LDR-T6试样拉伸断口的SEM像
图11  LDR与LDR-T6试样拉伸断口截面的OM像
图12  LDR试样修复区、LDR-T6试样修复区和熔合线附近的反极图(IPF),及LDR试样修复区的局部取向差(KAM)图和LDR试样的SEM像
图13  LDR与LDR-T6试样修复区晶界分布图及取向差统计图
图14  LDR与LDR-T6拉伸试样的断裂机制示意图
1 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
doi: 10.1016/j.jma.2019.08.001
3 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
doi: 10.1016/j.jma.2021.04.001
4 Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1
doi: 10.11900/0412.1961.2022.00026
4 宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 1
5 Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
6 Tang W N, Mo N, Hou J, et al. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
6 唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
7 Cheng B, Mao C, Zhang M J, et al. Comparative study on microstructure and properties of laser welding and argon arc welding Hastelloy C-276/SS304 with filler wire [J]. Opt. Laser Technol., 2023, 164: 109565
8 Ci S W, Liang J J, Li J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45: 23
doi: 10.1016/j.jmst.2020.01.003
9 Lin X, Cao Y Q, Wu X Y, et al. Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel [J]. Mater. Sci. Eng., 2012, A553: 80
10 Smail B S, Cailloux T, Quinsat Y, et al. Integrated approach to stainless steel 316L parts repair for pitting corrosion using laser metal deposition [J]. J. Manuf. Processes, 2023, 95: 1
11 Yan W G, Zeng W, Man J X, et al. Microstructure and mechanical properties of a directionally solidified superalloy DZ411 plate sample repaired by laser melting deposition [J]. Mater. Sci. Eng., 2023, A876: 145141
12 Wang Z D, Yang K, Chen M Z, et al. Investigation of the microstructure and mechanical properties of Ti-6Al-4V repaired by the powder-blown underwater directed energy deposition technique [J]. Mater. Sci. Eng., 2022, A831: 142
13 Qin L Y, Pang S, Yang G, et al. Microstructure and micro-hardness of laser deposition repair ZL114A aluminum alloy [J]. Infrared Laser Eng., 2017, 46: 0506004
13 钦兰云, 庞 爽, 杨 光 等. 激光沉积修复ZL114A铝合金的显微组织及显微硬度研究 [J]. 红外与激光工程, 2017, 46: 0506004
14 Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
14 彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
15 Dai J, Huang J, Li M, et al. Effects of heat treatments on laser welded Mg-rare earth alloy NZ30K [J]. Mater. Sci. Eng., 2011, A529: 401
16 Singh K. Effect of post-welding heat treatment on mechanical and microstructural properties of friction stir welded dissimilar magnesium alloys [J]. Mater. Today Proc., 2023, doi: 10.1016/j.matpr.2023.02.133
17 Tong X, Zhang G, Wu G H, et al. Addressing the abnormal grain coarsening during post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy [J]. Mater. Charact., 2021, 176: 111125
18 Zhang G Q, Tong X, Wu G H, et al. Research on the post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy [J]. Mater. Sci. Eng., 2021, A821: 141577
19 Yang G, Zhang W Q, Zhang J, et al. Evolution of microstructure of WE43 magnesium alloys fabricated by laser deposition manufacturing with subsequent friction stir processing [J]. Mater. Lett., 2023, 330: 133218
20 Jiao X Y, Li X J, Zhan L Q, et al. The Microstructural evolution and grain growth kinetics of fine-grained extruded Mg-Nd-Zn-Zr alloy [J]. Materials (Basel), 2022, 15: 3556
21 Ning Z L, Cao F Y, Liu H H, et al. Microstructure analysis of Mg-2.54Nd-0.26Zn-0.32Zr alloy [J]. Rare. Met. Mater. Eng., 2009, 38: 1997
21 宁志良, 曹福洋, 刘洪汇 等. Mg-2.54Nd-0.26Zn-0.32Zr合金组织分析 [J]. 稀有金属材料与工程, 2009, 38: 1997
22 Ning Z L, Liu H H, Cao F Y, et al. The effect of grain size on the tensile and creep properties of Mg-2.6Nd-0.35Zn-xZr alloys at 250 °C [J]. Mater. Sci. Eng., 2013, A560: 163
23 Gao M, Wang H K, Hao K D, et al. Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation [J]. J. Manuf. Processes, 2019, 45: 92
24 Lei Z L, Bi J, Li P, et al. Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy [J]. Opt. Laser Technol., 2018, 105: 15
25 Harooni M, Carlson B, Strohmeier B R, et al. Pore formation mechanism and its mitigation in laser welding of AZ31B magnesium alloy in lap joint configuration [J]. Mater. Des., 2014, 58: 265
26 Fu P H, Peng L M, Jiang H Yet al. Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy [J]. Mater. Sci. Eng., 2008, A486: 183
27 Chen R N, Chen Q H, Peng P, et al. Abnormal grain growth induced by <1120> orientation of AZ31 magnesium alloy [J]. Mater. Sci. Technol., 2023, 39: 1337
28 Pei R S, Korte-Kerzel S, Al-Samman T. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50: 257
doi: 10.1016/j.jmst.2020.01.014
29 Tang J W, Chen L, Li Z G, et al. Formation of abnormal coarse grains and its effects on corrosion behaviors of solution treated ZK60 Mg alloy [J]. Corros. Sci., 2021, 180: 109201
30 Kim H J, Jin S C, Jung J G, et al. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71: 87
doi: 10.1016/j.jmst.2020.08.056
31 Lezaack M B, Simar A. Avoiding abnormal grain growth in thick 7XXX aluminium alloy friction stir welds during T6 post heat treatments [J]. Mater. Sci. Eng., 2021, A807: 140901
32 Zheng D D, Li Z, Jiang Y L, et al. Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition [J]. Addit. Manuf., 2022, 57: 102957
33 Qin L Y, Pang S, Yang G, et al. Microstructure and mechanical property analysis of ZL114A aluminum alloy repaired by laser deposition [J]. Infrared Laser Eng., 2016, 43: 108
33 钦兰云, 庞 爽, 杨 光 等. 激光沉积修复ZL114A铝合金组织和力学性能分析 [J]. 中国激光, 2016, 43: 108
34 Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
[1] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[2] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[3] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[4] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[5] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[6] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[7] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[8] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[9] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[10] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[11] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[12] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[13] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[14] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[15] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.