|
|
高容量镁基储氢合金材料研究与应用进展 |
邹建新( ), 张嘉祺, 赵颖燕, 林羲, 丁文江 |
上海交通大学 上海市氢科学重点实验室和氢科学中心 上海 200240 |
|
Progress in the Research and Application of High-Capacity Mg-Based Hydrogen Storage Alloy Materials |
ZOU Jianxin( ), ZHANG Jiaqi, ZHAO Yingyan, LIN Xi, DING Wenjiang |
Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
Jianxin ZOU,
Jiaqi ZHANG,
Yingyan ZHAO,
Xi LIN,
Wenjiang DING.
Progress in the Research and Application of High-Capacity Mg-Based Hydrogen Storage Alloy Materials[J]. Acta Metall Sin, 2025, 61(3): 420-436.
1 |
Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
|
2 |
Guan D Q, Wang B W, Zhang J G, et al. Hydrogen society: From present to future [J]. Energy Environ. Sci., 2023, 16: 4926
|
3 |
Møller K T, Jensen T R, Akiba E, et al. Hydrogen—A sustainable energy carrier [J]. Prog. Nat. Sci.: Mater. Int., 2017, 27: 34
|
4 |
Yue M L, Lambert H, Pahon E, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges [J]. Renew. Sustain. Energy Rev., 2021, 146: 111180
|
5 |
Hassan I A, Ramadan H S, Saleh M A, et al. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives [J]. Renew. Sustain. Energy Rev., 2021, 149: 111311
|
6 |
Han G, Lu Y F, Jia H X, et al. Magnesium-based energy materials: Progress, challenges, and perspectives [J]. J. Magnes. Alloy., 2023, 11: 3896
|
7 |
Ren L, Li Y H, Zhang N, et al. Nanostructuring of Mg-based hydrogen storage materials: Recent advances for promoting key applications [J]. Nano-Micro Lett., 2023, 15: 93
doi: 10.1007/s40820-023-01041-5
pmid: 37037950
|
8 |
Zhao Y Y, Wang B L, Ren L, et al. Nanostructured MXene-based materials for boosting hydrogen sorption properties of Mg/MgH2 [J]. Mater. Rep.: Energy, 2024, 4: 100255
|
9 |
Yang Y X, Zhang X, Zhang L C, et al. Recent advances in catalyst-modified Mg-based hydrogen storage materials [J]. J. Mater. Sci. Technol., 2023, 163: 182
doi: 10.1016/j.jmst.2023.03.063
|
10 |
Zhang X L, Liu Y F, Zhang X, et al. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis [J]. Mater. Today Nano, 2020, 9: 100064
|
11 |
Zhang J Q, Hou Q H, Guo X T, et al. Achieve high-efficiency hydrogen storage of MgH2 catalyzed by nanosheets CoMoO4 and rGO [J]. J. Alloys Compd., 2022, 911: 165153
|
12 |
Hou Q H, Zhang J Q, Guo X T, et al. Improved MgH2 kinetics and cyclic stability by fibrous spherical NiMoO4 and rGO [J]. J. Taiwan Inst. Chem. Eng., 2022, 134: 104311
|
13 |
Zhao Y Y, Zhu Y F, Shi R, et al. Structural inhomogeneity: A potential strategy to improve the hydrogen storage performance of metal hydrides [J]. J. Mater. Chem., 2023, 11A: 13255
|
14 |
Li Q, Lu Y F, Luo Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials [J]. J. Magnes. Alloy., 2021, 9: 1922
|
15 |
Aguey-Zinsou K F, Ares-Fernández J R. Hydrogen in magnesium: New perspectives toward functional stores [J]. Energy Environ. Sci., 2010, 3: 526
|
16 |
Wagemans R W P, van Lenthe J H, de Jongh P E, et al. Hydrogen storage in magnesium clusters: Quantum chemical study [J]. J. Am. Chem. Soc., 2005, 127: 16675
pmid: 16305257
|
17 |
Varin R A, Czujko T, Wronski Z. Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling [J]. Nanotechnology, 2006, 17: 3856
|
18 |
Huang S J, Mose M P. High-energy ball milling-induced crystallographic structure changes of AZ61-Mg alloy for improved hydrogen storage [J]. J. Energy Storage, 2023, 68: 107773
|
19 |
Lang C G, Ouyang L Z, Yang L L, et al. Enhanced hydrogen storage kinetics in Mg@FLG composite synthesized by plasma assisted milling [J]. Int. J. Hydrogen Energy, 2018, 43: 17346
|
20 |
Zou R, Zhang W J, Dai M, et al. One-step synthesis of light metal nanoparticle from metastable complex [J]. Small, 2023, 19: 2206518
|
21 |
Wang Y, Ding Z M, Li X J, et al. Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres [J]. Dalton Trans., 2020, 49: 3495
doi: 10.1039/d0dt00025f
pmid: 32104875
|
22 |
Ren L, Zhu W, Li Y H, et al. Oxygen vacancy-rich 2D TiO2 nanosheets: A bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2 [J]. Nano-Micro Lett., 2022, 14: 144
doi: 10.1007/s40820-022-00891-9
pmid: 35838926
|
23 |
Ren L, Li Y H, Li Z, et al. Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump [J]. Nano-Micro Lett., 2024, 16: 160
doi: 10.1007/s40820-024-01375-8
pmid: 38512500
|
24 |
Zhao Y Y, Liu Z B, Liu J C, et al. Improvement effect of reversible solid solutions Mg2Ni(Cu)/Mg2Ni(Cu)H4 on hydrogen storage performance of MgH2 [J]. J. Magnes. Alloy., 2024, 12: 197
|
25 |
Zhu C Y, Hosokai S, Akiyama T. Growth mechanism for the controlled synthesis of MgH2/Mg crystals via a vapor-solid process [J]. Cryst. Growth Des., 2011, 11: 4166
|
26 |
Zhao Y Y, Zhu Y F, Shi R, et al. Magnesium nickel hydride monocrystalline nanoparticles for reversible hydrogen storage [J]. Mater. Rep.: Energy, 2024, 4: 100246
|
27 |
Pantić T, Mamula B P, Soderžnik K Ž, et al. The influence of defects on hydrogen sorption from Mg-V thin films [J]. Int. J. Hydrogen Energy, 2024, 54: 457
|
28 |
Li W Y, Li C S, Ma H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption [J]. J. Am. Chem. Soc., 2007, 129: 6710
pmid: 17488082
|
29 |
Norberg N S, Arthur T S, Fredrick S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution [J]. J. Am. Chem. Soc., 2011, 133: 10679
doi: 10.1021/ja201791y
pmid: 21671640
|
30 |
Liu W, Aguey-Zinsou K F. Hydrogen storage properties of in-situ stabilised magnesium nanoparticles generated by electroless reduction with alkali metals [J]. Int. J. Hydrogen Energy, 2015, 40: 16948
|
31 |
Lu C, Ma Y L, Li F, et al. Visualization of fast “hydrogen pump” in core-shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt [J]. J. Mater. Chem., 2019, 7A: 14629
|
32 |
Ren L, Zhu W, Zhang Q Y, et al. MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage [J]. Chem. Eng. J., 2022, 434: 134701
|
33 |
Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides [J]. Energy Environ. Sci., 2021, 14: 2302
|
34 |
Liang C X, Wang Z B, Zhang M J, et al. Research progress on magnesium-based solid hydrogen storage nanomaterials [J]. Energy Storage Sci. Technol., 2024, 13: 788
|
34 |
梁宸曦, 王振斌, 张明锦 等. 镁基固态储氢材料的研究进展 [J]. 储能科学与技术, 2024, 13: 788
doi: 10.19799/j.cnki.2095-4239.2023.0826
|
35 |
Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and copper [J]. Inorg. Chem., 1967, 6: 2220
|
36 |
Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. Inorg. Chem., 1968, 7: 2254
|
37 |
Zou J X, Ding W J. Review of research hotspots in magnesium-based hydrogen storage materials in 2023 [J]. Sci. Technol. Rev., 2024, 42(1): 204
doi: 10.3981/j.issn.1000-7857.2024.01.013
|
37 |
邹建新, 丁文江. 2023年镁基储氢材料研究热点回眸 [J]. 科技导报, 2024, 42(1): 204
doi: 10.3981/j.issn.1000-7857.2024.01.013
|
38 |
Zhang B W, Zeng Z Q, Li J C, et al. Microstructure and hydrogen storage properties of magnesium-gallium binary alloys [J]. J. Phys. Chem. Solids, 2024, 190: 112028
|
39 |
Zhang J X, Ding X, Chen R R, et al. Effective attempt towards enhancing hydrogen storage performance of LPSO phase contained high-capacity Mg-based alloy by Indium [J]. Int. J. Hydrogen Energy, 2024, 50: 431
|
40 |
Lu Y S, Wang H, Liu J W, et al. Reversible de/hydriding reactions between two new Mg-In-Ni compounds with improved thermodynamics and kinetics [J]. J. Phys. Chem., 2015, 119C: 26858
|
41 |
Zhang J X, Ding X, Chen R R, et al. Precursor H-induced pyrolysis towards hydrogen storage properties enhancement of Mg-Y-Zn alloys with diverse Y level [J]. J. Power Sources, 2023, 560: 232695
|
42 |
Tan X F, Kim M, Gu Q F, et al. Na-modified cast hypo-eutectic Mg-Mg2Si alloys for solid-state hydrogen storage [J]. J. Power Sources, 2022, 538: 231538
|
43 |
Yao H, Zeng G, Tan X F, et al. Hydrogen storage performance and phase transformations in as-cast and extruded Mg-Ni-Gd-Y-Zn-Cu alloys [J]. J. Mater. Sci. Technol., 2023, 151: 162
doi: 10.1016/j.jmst.2022.12.015
|
44 |
Zhang J X, Ding X, Chen R R, et al. Diversification of interfaces triggered hydrogen storage properties enhancement [J]. Rare Met., 2024, 43: 2324
|
45 |
Ma Z W, Huang Z Y, Li Z, et al. Insights into thermodynamic destabilization in Mg-In-D hydrogen storage system: A combined synchrotron X-ray and neutron diffraction study [J]. Energy Storage Mater., 2023, 56: 432
|
46 |
de Brito Ferraz M, Botta W J, Zepon G. Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25-V10Zn15 high entropy alloy [J]. Int. J. Hydrogen Energy, 2022, 47: 22881
|
47 |
El Osery I A. Theory of the computer code RET 1 for the calculation of space-time dependent temperature and composition properties of metal hydride hydrogen storage beds [J]. Int. J. Hydrogen Energy, 1983, 8: 191
|
48 |
Lucas G, Richards W. Mathematical modelling of hydrogen storage systems [J]. Int. J. Hydrogen Energy, 1984, 9: 225
|
49 |
Nasako K, Ito Y, Hiro N, et al. Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy [J]. J. Alloys Compd., 1998, 264: 271
|
50 |
Jemni A, Nasrallah S B. Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor [J]. Int. J. Hydrogen Energy, 1995, 20: 881
|
51 |
Mat M D, Kaplan Y, Aldas K. Investigation of three‐dimensional heat and mass transfer in a metal hydride reactor [J]. Int. J. Energy Res., 2002, 26: 973
|
52 |
Lin X, Yin C L, Ren L, et al. A one- and three-dimensional coupled model and simulation investigation for the large-scale oil-heating type Mg-based hydrogen storage tank [J]. Chem. Eng. J., 2023, 472: 144943
|
53 |
Shao L F, Lin X, Bian L S, et al. Engineering control strategy of hydrogen gas direct-heating type Mg-based solid state hydrogen storage tanks: A simulation investigation [J]. Appl. Energy, 2024, 375: 124134
|
54 |
Wu Z, Yang F S, Zhang Z X, et al. Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design [J]. Appl. Energy, 2014, 130: 712
|
55 |
Wu Z, Yang F S, Zhu L Y, et al. Improvement in hydrogen desorption performances of magnesium based metal hydride reactor by incorporating helical coil heat exchanger [J]. Int. J. Hydrogen Energy, 2016, 41: 16108
|
56 |
Nyamsi N S, Wu Z, Zhang Z X, et al. Dehydrogenation performance of metal hydride container utilising MgH2-based composite [J]. Appl. Therm. Eng., 2022, 209: 118314
|
57 |
Ye Y, Lu J F, Ding J, et al. Performance improvement of metal hydride hydrogen storage tanks by using phase change materials [J]. Appl. Energy, 2022, 320: 119290
|
58 |
Lutz M, Bhouri M, Linder M, et al. Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation [J]. Appl. Energy, 2019, 236: 1034
|
59 |
Chang H, Tao Y B, Ye H. Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material [J]. Int. J. Hydrogen Energy, 2023, 48: 20006
|
60 |
Jehan M, Fruchart D. McPhy-Energy's proposal for solid state hydrogen storage materials and systems [J]. J. Alloys Compd., 2013, 580: S343
|
61 |
Ren L, Li Y H, Lin X, et al. Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems [J]. Front. Energy, 2023, 17: 320
doi: 10.1007/s11708-023-0889-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|