Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 420-436    DOI: 10.11900/0412.1961.2024.00344
  综述 本期目录 | 过刊浏览 |
高容量镁基储氢合金材料研究与应用进展
邹建新(), 张嘉祺, 赵颖燕, 林羲, 丁文江
上海交通大学 上海市氢科学重点实验室和氢科学中心 上海 200240
Progress in the Research and Application of High-Capacity Mg-Based Hydrogen Storage Alloy Materials
ZOU Jianxin(), ZHANG Jiaqi, ZHAO Yingyan, LIN Xi, DING Wenjiang
Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
Jianxin ZOU, Jiaqi ZHANG, Yingyan ZHAO, Xi LIN, Wenjiang DING. Progress in the Research and Application of High-Capacity Mg-Based Hydrogen Storage Alloy Materials[J]. Acta Metall Sin, 2025, 61(3): 420-436.

全文: PDF(5194 KB)   HTML
摘要: 

随着近年来氢能产业的迅速发展,镁基固态储氢材料及其储运氢系统得到了全球的广泛关注,出现了许多突破性研究和进展。在新材料体系设计方面,高性能纳米镁基储氢材料和改性镁基铸造合金的研发有效改善了Mg及其氢化物的热力学稳定性和动力学性能,实现了材料在中低温条件下的快速吸脱氢和低成本应用。在系统开发方面,借助先进的模拟方法和设计策略对镁基固态储氢系统的结构与操作参数进行优化,实现了镁基固态储氢系统的有效热管理。在工程应用方面,世界首台吨级镁基固态储运氢车落地,多个镁基固态储运氢示范应用和加氢站也陆续问世。本文从纳米镁基储氢材料、改性镁基储氢合金、镁基储氢系统开发和示范应用4方面讨论了镁基储氢材料的重要研究进展,总结了其在氢能储运领域的相关工程示范及应用,并对未来的研究趋势进行了展望。

关键词 氢能镁基储氢材料热/动力学性能数值模拟镁基固态储运氢系统    
Abstract

With the rapid advancement of the hydrogen energy industry in recent years, Mg-based solid hydrogen storage materials and their associated storage and transportation systems have garnered significant global attention, leading to numerous groundbreaking studies and remarkable progresses. In the field of material design, high-performance nano Mg-based hydrogen storage materials and modified Mg-based hydrogen storage alloys have significantly enhanced the thermodynamic stability and kinetic properties of Mg and its hydrides. These advancements enable rapid hydrogen absorption and desorption at moderate or even room temperatures, paving the way for cost-effective applications. In terms of system development, the structural design and operational parameters of Mg-based solid hydrogen storage systems have been optimized through advanced simulation techniques and innovative design strategies, thus efficient thermal management of the storage system is achieved. In terms of engineering applications, the world's first ton-level Mg-based solid-state hydrogen storage and transportation trailer has been successfully launched. Additionally, multiple demonstration projects, including Mg-based solid-state hydrogen storage systems and hydrogen refueling stations, have been initiated worldwide. This paper reviews the significant research advancements in Mg-based hydrogen storage materials, focusing on four key areas: nanocrystallization, alloying, system development, and demonstration applications. It also summarizes relevant engineering demonstrations and applications in hydrogen energy storage and transportation, providing suggestions for the future research directions and potential applications.

Key wordshydrogen energy    Mg-based hydrogen storage material    thermodynamic and kinetic properties    numerical simulation    Mg-based solid-state hydrogen storage and transportation system
收稿日期: 2024-10-12     
ZTFLH:  TK91  
基金资助:国家自然科学基金项目(52201266);国家自然科学基金项目(52171186);国家重点研发计划项目(2023YFB3809103);博士后研究人员计划项目(GZC20231546)
通讯作者: 邹建新,zoujx@sjtu.edu.cn,主要从事镁基能源材料方面的基础研究与应用开发工作
Corresponding author: ZOU Jianxin, professor, Tel: (021)54740302, E-mail: zoujx@sjtu.edu.cn
作者简介: 邹建新,男,1978年生,教授,博士张嘉祺(共同第一作者),男,1996年生,博士
邹建新,男,1978年生,教授,博士张嘉祺(共同第一作者),男,1996年生,博士
图 1  美国能源部(DOE)发布的固态储氢材料及其体积/重量氢密度指标[2]
图2  通过氢化燃烧法 + 高能球磨法(HCS + HEBM)制备的MgH2-Ni@NCS纳米复合储氢材料工艺流程、球形形貌SEM像及脱氢性能和循环稳定性[21]
图3  纳米限域的MgH2/Ni@pCNF机理[32] (pCNF—多孔碳纤维)
图4  非限域超细MgH2的制备示意图及TEM表征[33]
图5  Mg-Ga合金的制备工艺及性能图[38]
图6  Mg95Y3Zn2合金吸放氢过程机理图[41]
图7  Mg-Ni-Gd-Y-Zn-Cu合金形貌及储氢性能机理图[43]
图8  Mg93Y3Zn2Al2合金的典型TEM表征结果[44]
图9  MgIn到Mg3In的相变和在整个氘(D)释放过程中原位XRD谱[45]
图10  导热油流速对镁镍合金储氢罐平均反应分数的影响及平均反应分数为0.8的横截面上反应分数的分布[52]
图11  H2直接加热型镁基储氢罐与固体氧化物电解池(SOEC)和固体氧化物燃料电池(SOFC)耦合的潜在应用方案管道仪表流程图(PID)[53]
图12  耦合相变材料的镁基固态储氢系统传统结构与夹层结构示意图[59]
图13  McPhy公司开发的镁基固态储氢材料和镁基固态储氢装置[60]
图14  世界首台吨级镁基固态储运氢装置,第二代槽罐式吨级镁基固态储氢装置,及吨级镁基固态储氢/加氢站[61]
图15  镁基固态储运氢技术在不同工业领域的应用
1 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
2 Guan D Q, Wang B W, Zhang J G, et al. Hydrogen society: From present to future [J]. Energy Environ. Sci., 2023, 16: 4926
3 Møller K T, Jensen T R, Akiba E, et al. Hydrogen—A sustainable energy carrier [J]. Prog. Nat. Sci.: Mater. Int., 2017, 27: 34
4 Yue M L, Lambert H, Pahon E, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges [J]. Renew. Sustain. Energy Rev., 2021, 146: 111180
5 Hassan I A, Ramadan H S, Saleh M A, et al. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives [J]. Renew. Sustain. Energy Rev., 2021, 149: 111311
6 Han G, Lu Y F, Jia H X, et al. Magnesium-based energy materials: Progress, challenges, and perspectives [J]. J. Magnes. Alloy., 2023, 11: 3896
7 Ren L, Li Y H, Zhang N, et al. Nanostructuring of Mg-based hydrogen storage materials: Recent advances for promoting key applications [J]. Nano-Micro Lett., 2023, 15: 93
doi: 10.1007/s40820-023-01041-5 pmid: 37037950
8 Zhao Y Y, Wang B L, Ren L, et al. Nanostructured MXene-based materials for boosting hydrogen sorption properties of Mg/MgH2 [J]. Mater. Rep.: Energy, 2024, 4: 100255
9 Yang Y X, Zhang X, Zhang L C, et al. Recent advances in catalyst-modified Mg-based hydrogen storage materials [J]. J. Mater. Sci. Technol., 2023, 163: 182
doi: 10.1016/j.jmst.2023.03.063
10 Zhang X L, Liu Y F, Zhang X, et al. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis [J]. Mater. Today Nano, 2020, 9: 100064
11 Zhang J Q, Hou Q H, Guo X T, et al. Achieve high-efficiency hydrogen storage of MgH2 catalyzed by nanosheets CoMoO4 and rGO [J]. J. Alloys Compd., 2022, 911: 165153
12 Hou Q H, Zhang J Q, Guo X T, et al. Improved MgH2 kinetics and cyclic stability by fibrous spherical NiMoO4 and rGO [J]. J. Taiwan Inst. Chem. Eng., 2022, 134: 104311
13 Zhao Y Y, Zhu Y F, Shi R, et al. Structural inhomogeneity: A potential strategy to improve the hydrogen storage performance of metal hydrides [J]. J. Mater. Chem., 2023, 11A: 13255
14 Li Q, Lu Y F, Luo Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials [J]. J. Magnes. Alloy., 2021, 9: 1922
15 Aguey-Zinsou K F, Ares-Fernández J R. Hydrogen in magnesium: New perspectives toward functional stores [J]. Energy Environ. Sci., 2010, 3: 526
16 Wagemans R W P, van Lenthe J H, de Jongh P E, et al. Hydrogen storage in magnesium clusters: Quantum chemical study [J]. J. Am. Chem. Soc., 2005, 127: 16675
pmid: 16305257
17 Varin R A, Czujko T, Wronski Z. Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling [J]. Nanotechnology, 2006, 17: 3856
18 Huang S J, Mose M P. High-energy ball milling-induced crystallographic structure changes of AZ61-Mg alloy for improved hydrogen storage [J]. J. Energy Storage, 2023, 68: 107773
19 Lang C G, Ouyang L Z, Yang L L, et al. Enhanced hydrogen storage kinetics in Mg@FLG composite synthesized by plasma assisted milling [J]. Int. J. Hydrogen Energy, 2018, 43: 17346
20 Zou R, Zhang W J, Dai M, et al. One-step synthesis of light metal nanoparticle from metastable complex [J]. Small, 2023, 19: 2206518
21 Wang Y, Ding Z M, Li X J, et al. Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres [J]. Dalton Trans., 2020, 49: 3495
doi: 10.1039/d0dt00025f pmid: 32104875
22 Ren L, Zhu W, Li Y H, et al. Oxygen vacancy-rich 2D TiO2 nanosheets: A bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2 [J]. Nano-Micro Lett., 2022, 14: 144
doi: 10.1007/s40820-022-00891-9 pmid: 35838926
23 Ren L, Li Y H, Li Z, et al. Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump [J]. Nano-Micro Lett., 2024, 16: 160
doi: 10.1007/s40820-024-01375-8 pmid: 38512500
24 Zhao Y Y, Liu Z B, Liu J C, et al. Improvement effect of reversible solid solutions Mg2Ni(Cu)/Mg2Ni(Cu)H4 on hydrogen storage performance of MgH2 [J]. J. Magnes. Alloy., 2024, 12: 197
25 Zhu C Y, Hosokai S, Akiyama T. Growth mechanism for the controlled synthesis of MgH2/Mg crystals via a vapor-solid process [J]. Cryst. Growth Des., 2011, 11: 4166
26 Zhao Y Y, Zhu Y F, Shi R, et al. Magnesium nickel hydride monocrystalline nanoparticles for reversible hydrogen storage [J]. Mater. Rep.: Energy, 2024, 4: 100246
27 Pantić T, Mamula B P, Soderžnik K Ž, et al. The influence of defects on hydrogen sorption from Mg-V thin films [J]. Int. J. Hydrogen Energy, 2024, 54: 457
28 Li W Y, Li C S, Ma H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption [J]. J. Am. Chem. Soc., 2007, 129: 6710
pmid: 17488082
29 Norberg N S, Arthur T S, Fredrick S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution [J]. J. Am. Chem. Soc., 2011, 133: 10679
doi: 10.1021/ja201791y pmid: 21671640
30 Liu W, Aguey-Zinsou K F. Hydrogen storage properties of in-situ stabilised magnesium nanoparticles generated by electroless reduction with alkali metals [J]. Int. J. Hydrogen Energy, 2015, 40: 16948
31 Lu C, Ma Y L, Li F, et al. Visualization of fast “hydrogen pump” in core-shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt [J]. J. Mater. Chem., 2019, 7A: 14629
32 Ren L, Zhu W, Zhang Q Y, et al. MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage [J]. Chem. Eng. J., 2022, 434: 134701
33 Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides [J]. Energy Environ. Sci., 2021, 14: 2302
34 Liang C X, Wang Z B, Zhang M J, et al. Research progress on magnesium-based solid hydrogen storage nanomaterials [J]. Energy Storage Sci. Technol., 2024, 13: 788
34 梁宸曦, 王振斌, 张明锦 等. 镁基固态储氢材料的研究进展 [J]. 储能科学与技术, 2024, 13: 788
doi: 10.19799/j.cnki.2095-4239.2023.0826
35 Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and copper [J]. Inorg. Chem., 1967, 6: 2220
36 Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. Inorg. Chem., 1968, 7: 2254
37 Zou J X, Ding W J. Review of research hotspots in magnesium-based hydrogen storage materials in 2023 [J]. Sci. Technol. Rev., 2024, 42(1): 204
doi: 10.3981/j.issn.1000-7857.2024.01.013
37 邹建新, 丁文江. 2023年镁基储氢材料研究热点回眸 [J]. 科技导报, 2024, 42(1): 204
doi: 10.3981/j.issn.1000-7857.2024.01.013
38 Zhang B W, Zeng Z Q, Li J C, et al. Microstructure and hydrogen storage properties of magnesium-gallium binary alloys [J]. J. Phys. Chem. Solids, 2024, 190: 112028
39 Zhang J X, Ding X, Chen R R, et al. Effective attempt towards enhancing hydrogen storage performance of LPSO phase contained high-capacity Mg-based alloy by Indium [J]. Int. J. Hydrogen Energy, 2024, 50: 431
40 Lu Y S, Wang H, Liu J W, et al. Reversible de/hydriding reactions between two new Mg-In-Ni compounds with improved thermodynamics and kinetics [J]. J. Phys. Chem., 2015, 119C: 26858
41 Zhang J X, Ding X, Chen R R, et al. Precursor H-induced pyrolysis towards hydrogen storage properties enhancement of Mg-Y-Zn alloys with diverse Y level [J]. J. Power Sources, 2023, 560: 232695
42 Tan X F, Kim M, Gu Q F, et al. Na-modified cast hypo-eutectic Mg-Mg2Si alloys for solid-state hydrogen storage [J]. J. Power Sources, 2022, 538: 231538
43 Yao H, Zeng G, Tan X F, et al. Hydrogen storage performance and phase transformations in as-cast and extruded Mg-Ni-Gd-Y-Zn-Cu alloys [J]. J. Mater. Sci. Technol., 2023, 151: 162
doi: 10.1016/j.jmst.2022.12.015
44 Zhang J X, Ding X, Chen R R, et al. Diversification of interfaces triggered hydrogen storage properties enhancement [J]. Rare Met., 2024, 43: 2324
45 Ma Z W, Huang Z Y, Li Z, et al. Insights into thermodynamic destabilization in Mg-In-D hydrogen storage system: A combined synchrotron X-ray and neutron diffraction study [J]. Energy Storage Mater., 2023, 56: 432
46 de Brito Ferraz M, Botta W J, Zepon G. Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25-V10Zn15 high entropy alloy [J]. Int. J. Hydrogen Energy, 2022, 47: 22881
47 El Osery I A. Theory of the computer code RET 1 for the calculation of space-time dependent temperature and composition properties of metal hydride hydrogen storage beds [J]. Int. J. Hydrogen Energy, 1983, 8: 191
48 Lucas G, Richards W. Mathematical modelling of hydrogen storage systems [J]. Int. J. Hydrogen Energy, 1984, 9: 225
49 Nasako K, Ito Y, Hiro N, et al. Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy [J]. J. Alloys Compd., 1998, 264: 271
50 Jemni A, Nasrallah S B. Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor [J]. Int. J. Hydrogen Energy, 1995, 20: 881
51 Mat M D, Kaplan Y, Aldas K. Investigation of three‐dimensional heat and mass transfer in a metal hydride reactor [J]. Int. J. Energy Res., 2002, 26: 973
52 Lin X, Yin C L, Ren L, et al. A one- and three-dimensional coupled model and simulation investigation for the large-scale oil-heating type Mg-based hydrogen storage tank [J]. Chem. Eng. J., 2023, 472: 144943
53 Shao L F, Lin X, Bian L S, et al. Engineering control strategy of hydrogen gas direct-heating type Mg-based solid state hydrogen storage tanks: A simulation investigation [J]. Appl. Energy, 2024, 375: 124134
54 Wu Z, Yang F S, Zhang Z X, et al. Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design [J]. Appl. Energy, 2014, 130: 712
55 Wu Z, Yang F S, Zhu L Y, et al. Improvement in hydrogen desorption performances of magnesium based metal hydride reactor by incorporating helical coil heat exchanger [J]. Int. J. Hydrogen Energy, 2016, 41: 16108
56 Nyamsi N S, Wu Z, Zhang Z X, et al. Dehydrogenation performance of metal hydride container utilising MgH2-based composite [J]. Appl. Therm. Eng., 2022, 209: 118314
57 Ye Y, Lu J F, Ding J, et al. Performance improvement of metal hydride hydrogen storage tanks by using phase change materials [J]. Appl. Energy, 2022, 320: 119290
58 Lutz M, Bhouri M, Linder M, et al. Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation [J]. Appl. Energy, 2019, 236: 1034
59 Chang H, Tao Y B, Ye H. Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material [J]. Int. J. Hydrogen Energy, 2023, 48: 20006
60 Jehan M, Fruchart D. McPhy-Energy's proposal for solid state hydrogen storage materials and systems [J]. J. Alloys Compd., 2013, 580: S343
61 Ren L, Li Y H, Lin X, et al. Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems [J]. Front. Energy, 2023, 17: 320
doi: 10.1007/s11708-023-0889-1
[1] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[2] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[3] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[4] 任松, 吴家柱, 张屹, 张大斌, 曹阳, 尹存宏. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60(12): 1678-1690.
[5] 郭杰, 黄立清, 吴京洋, 李俊杰, 王锦程, 樊凯. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 60(11): 1531-1544.
[6] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[7] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[11] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[12] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[13] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[14] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[15] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.