|
|
钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究 |
孟祥龙1, 刘瑞良1( ), Li D. Y.2( ) |
1 哈尔滨工程大学 材料科学与化学工程学院 超轻材料与表面技术教育部重点实验室 哈尔滨 150001 2 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9 |
|
First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys |
MENG Xianglong1, LIU Ruiliang1( ), Li D. Y.2( ) |
1 Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9 |
引用本文:
孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
Xianglong MENG,
Ruiliang LIU,
D. Y. Li.
First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys[J]. Acta Metall Sin, 2025, 61(5): 797-808.
1 |
Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors [J]. J. Electrochem. Soc., 2003, 150: A292
|
2 |
Mani G, Porter D, Grove K, et al. A comprehensive review of biological and materials properties of tantalum and its alloys [J]. J. Biomed. Mater. Res., 2022, 110A: 1291
|
3 |
Massot L, Chamelot P, Taxil P. Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate [J]. J. Alloys Compd., 2006, 424: 199
|
4 |
Wang Z H. Advances on surface treatment process of tantalum [J]. Heat Treat. Met., 2024, 49: 259
|
4 |
王哲昊. 金属钽表面处理工艺进展 [J]. 金属热处理, 2024, 49: 259
|
5 |
Carette L, Jacquet P, Cotton D, et al. (TaC/Ta2C) bilayer formed on carburized and annealed tantalum; development of a numerical growth model [J]. Appl. Surf. Sci., 2019, 467-468: 84
|
6 |
Zhao Z Y, Cao L, Liang F, et al. A new strategy for preparing carbide coatings on easily oxidized tantalum by non-vacuum carburizing: Fe-coating-mediated carburization [J]. Vacuum, 2024, 221: 112951
|
7 |
Tang Q H, Zhuang X L, Fang J F, et al. Surface carburising of tantalum and its alloys [J]. Rare. Met., 1991, (2): 116
|
7 |
唐全红, 庄祥麟, 方金法 等. 钽及其合金的表面渗碳强化 [J]. 稀有金属, 1991, (2): 116
|
8 |
Zheng X. Surface treatment to improve the corrosion resistance of tantalum [J]. Rare. Met. Lett., 2002, (4): 21
|
8 |
郑 欣. 提高钽耐蚀性的表面处理法 [J]. 稀有金属快报, 2002, (4): 21
|
9 |
Zhou H L, Hu Y, Zhu K W, et al. Surface modification of tantalum sheets by methane plasma carburizing [J]. Chin. J. Vac. Sci. Technol., 2018, 38A: 48
|
9 |
周寰林, 胡 殷, 朱康伟 等. 钽表面的甲烷等离子渗碳改性技术研究 [J]. 真空科学与技术学报, 2018, 38: 48
|
10 |
Zhou H L. Study of ionic carburisation modification of tantalum surfaces [D]. Mianyang: China Academy of Engineering Physics, 2017
|
10 |
周寰林. 钽表面离子渗碳改性研究 [D]. 绵阳: 中国工程物理研究院, 2017
|
11 |
Li J, Yan X D, Yang Y, et al. Vacuum carburization process of Ta and Ta-W alloys [J]. Chin. J. Rare Met., 2018, 42: 925
|
11 |
李 佳, 闫晓东, 杨 银 等. Ta及Ta-W合金真空渗碳工艺研究 [J]. 稀有金属, 2018, 42: 925
|
12 |
Hui P F. Microstructure and properties of carbide coatings on metal (Ta, Mo, Ti6Al4V) surface prepared by interstitial carburization [D]. Xi'an: Xi'an University of Technology, 2019
|
12 |
惠鹏飞. 间隙原子渗碳法制备金属(Ta、Mo、Ti6Al4V)表面碳化层的组织和性能研究 [D]. 西安: 西安理工大学, 2019
|
13 |
Zhang C, Yin H Q, Du Y, et al. Thermodynamic modeling of the Ta-Mo-C ternary system [J]. Calphad, 2017, 59: 99
|
14 |
Frisk K. A thermodynamic analysis of the Ta-W-C and the Ta-W-C-N systems [J]. Int. J. Mater. Res., 1999, 90: 704
|
15 |
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films [J]. Nature, 2003, 422: 506
|
16 |
Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides [J]. Adv. Funct. Mater., 2013, 23: 2185
|
17 |
Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nat. Commun., 2018, 9: 4980
doi: 10.1038/s41467-018-07160-7
pmid: 30478375
|
18 |
Liu R L, Li D Y. Electron work function as an indicator for tuning the bulk modulus of MC carbide by metal-substitution: A first-principles computational study [J]. Scr. Mater., 2021, 204: 114148
|
19 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
20 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
|
21 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
22 |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
|
23 |
Liu Z T Y, Gall D, Khare S V. Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides [J]. Phys. Rev., 2014, 90B: 134102
|
24 |
Yang Y, Wang W, Gan G Y, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation [J]. Phys. Rev., 2018, 550B: 163
|
25 |
Tasnádi F, Odén M, Abrikosov I A. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence [J]. Phys. Rev., 2012, 85B: 144112
|
26 |
Hossain M D, Borman T, Kumar A, et al. Carbon stoichiometry and mechanical properties of high entropy carbides [J]. Acta Mater., 2021, 215: 117051
|
27 |
Wu Z J, Zhao E J, Xiang H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Phys. Rev., 2007, 76B: 054115
|
28 |
Shi Y J, Du Y L, Chen G. First-principles study on the elastic and electronic properties of hexagonal ε-Fe3N [J]. Comput. Mater. Sci., 2013, 67: 341
|
29 |
Hill R. The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
|
30 |
Chen X Q, Niu H Y, Li D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19: 1275
|
31 |
Van De Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: A user guide [J]. Calphad, 2002, 26: 539
|
32 |
Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
pmid: 10042897
|
33 |
Mattheiss L F, Hamann D R. Bulk and surface electronic structure of hexagonal WC [J]. Phys. Rev., 1984, 30B: 1731
|
34 |
Yu X X, Weinberger C R, Thompson G B. Ab initio investigations of the phase stability in tantalum carbides [J]. Acta Mater., 2014, 80: 341
|
35 |
Liu R L, Zhang D, Tang Y Q, et al. (W1 - x, Mx ) C carbides with desired combinations of compatible density and properties—A first-principles study [J]. J. Am. Ceram. Soc., 2021, 104: 4239
|
36 |
Edström D, Sangiovanni D G, Hultman L, et al. Elastic properties and plastic deformation of TiC- and VC-based pseudobinary alloys [J]. Acta Mater., 2018, 144: 376
|
37 |
Zhao S J. Defect energetics and stacking fault formation in high-entropy carbide ceramics [J]. J. Eur. Ceram. Soc., 2022, 42: 5290
|
38 |
Shao L, Jiang H H, Xu C R, et al. The lattice distortion, mechanical and thermodynamic properties of A(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 (A = Sr, Ba) high-entropy perovskite with B-site disorder: First principles prediction [J]. Mater. Des., 2022, 224: 111308
|
39 |
Blakemore J S. Solid State Physics [M]. Cambridge: Cambridge University Press, 1985: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|