Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 797-808    DOI: 10.11900/0412.1961.2024.00096
  研究论文 本期目录 | 过刊浏览 |
钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究
孟祥龙1, 刘瑞良1(), Li D. Y.2()
1 哈尔滨工程大学 材料科学与化学工程学院 超轻材料与表面技术教育部重点实验室 哈尔滨 150001
2 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9
First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys
MENG Xianglong1, LIU Ruiliang1(), Li D. Y.2()
1 Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9
引用本文:

孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
Xianglong MENG, Ruiliang LIU, D. Y. Li. First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys[J]. Acta Metall Sin, 2025, 61(5): 797-808.

全文: PDF(1843 KB)   HTML
摘要: 

Ta及其合金具有熔点高和耐磨性好等特点,采用渗碳等表面改性技术可在Ta及其合金表面获得含碳化钽的改性层,显著提高其表面性能,但是不同钽合金表面析出碳化钽的结构和性能尚不清楚。本工作以Ta-Mo和Ta-W钽合金为研究对象,构建了含不同种类及含量合金元素的fcc和hcp结构复合碳化钽(Ta, M)C (M = Mo、W)模型,利用基于密度泛函理论的第一性原理方法对不同复合碳化钽结构的能量和力学性质进行计算,探索复合碳化钽的强韧化机制。计算结果表明,当Mo和W含量低于50%时,易于形成fcc结构的复合碳化钽,且Mo、W原子浓度越高,具有fcc结构的复合碳化钽的模量和硬度越低,韧性越好;当Mo和W含量高于50%时,易于形成hcp结构的Ta的碳化物,随着Mo、W原子浓度的提高,具有hcp结构的复合碳化钽的模量和硬度增加,韧性降低。

关键词 钽合金复合碳化钽第一性原理计算晶体结构稳定性力学性能    
Abstract

Tantalum and its alloys have high melting points and good wear resistance, which are primarily used in fields such as the aerospace and nuclear energy industry. Surface modification techniques such as carburization can be used to obtain a modified layer containing tantalum carbide on the surface of tantalum and its alloys, thereby significantly improving their surface properties. However, the structure and properties of tantalum carbide precipitated on the surface of different tantalum alloys remain unclear. This study focuses on Ta-Mo and Ta-W alloys, and constructs fcc and hcp complex tantalum carbide (Ta, M)C (M = Mo, W) models with different alloying elements and their contents. The energy and mechanical properties of different complex tantalum carbide structures were calculated using the first principles method based on the density functional theory to explore the strengthening and toughening mechanisms of complex tantalum carbides. Calculation results indicate that when the content of Mo and W is less than 50%, fcc structured complex tantalum carbide can be easily formed, and the higher the concentration of Mo and W atoms, the lower the modulus and hardness of the complex tantalum carbide with an fcc structure, and the better the toughness. When the content of Mo and W exceeds 50%, tantalum carbides with an hcp structure are easy to form. As the concentration of Mo and W atoms increases, the modulus and hardness of complex tantalum carbides with an hcp structure increase, whereas the toughness decreases.

Key wordstantalum alloy    complex tantalum carbide    first-principles calculation    crystal structure    stability    mechanical property
收稿日期: 2024-03-27     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(52371060);黑龙江省自然科学基金项目(LH2023E060);中央高校基本科研业务费项目(3072023WD010)
通讯作者: 刘瑞良,liuruiliang@hrbeu.edu.cn,主要从事金属材料强韧化及其表面改性研究;
D. Y. Li,dongyang.li@ualberta.ca,主要从事材料表/界面以及计算材料学研究
Corresponding author: LIU Ruiliang, professor, Tel: (0451)82518731, E-mail: liuruiliang@hrbeu.edu.cn;
D. Y. Li, Tel: (0451)82518731, E-mail: dongyang.li@ualberta.ca
作者简介: 孟祥龙,男,1999年生,硕士
图1  不同结构复合碳化钽的特殊准随机结构(SQS)超胞模型
Crystal structureCarbide

Lattice constant

nm

Angle

(°)

Volume

nm3

Ef

eV·atom-1

Ec

eV·atom-1

fccTaC, this worka¯ = 0.44781α = β = γ = 90.000.71839-0.5962-8.5998
TaC[34]a = 0.447-0.59
Ta0.75Mo0.25Ca¯ = 0.44554α = 90.04, β = γ = 90.000.70753-0.4089-8.1705
Ta0.5Mo0.5Ca¯ = 0.44320α = β =89.78, γ = 90.220.69645-0.2246-7.7442
Ta0.25Mo0.75Ca¯ = 0.44061α = 89.79, β = γ = 90.000.68428-0.0432-7.6155
MoCa¯ = 0.43699α = β = γ = 90.000.667560.1400-6.8956
hcpTa2C

a = b = 0.31249,

c = 0.49593

α = β = 90.00,

γ = 120.00

0.33551-0.6163-8.6566
(P3¯m1, this work)
Ta2C (P3¯m1)[34]

a = b = 0.311,

c = 0.495

γ = 120.00-0.60
Ta0.75Mo0.25C

a = 0.45271,

b = 0.45256,

c = 0.43049

α = 90.05,

β = 89.96,

γ = 120.01

0.68590-0.1681-7.9208
Ta0.5Mo0.5C

a = 0.44703,

b = 0.44702,

c = 0.42883

α = 90.07,

β = 89.98,

γ = 120.01

0.59361-0.1616-7.6633
Ta0.25Mo0.75C

a = 0.44261,

b = 0.44227,

c = 0.42681

α = 89.99,

β = 90.01,

γ = 120.02

0.57870-0.1610-7.4476
MoC

a = b = 0.43761,

c = 0.42422

α = β = 90.00,

γ = 120.00

0.56283-0.1519-7.1876
表1  含Mo复合碳化钽结构的晶体参数、形成能(Ef)和内聚能(Ec)
图2  不同结构含Mo复合碳化钽的Ec和Ef
Crystal structureCarbide

Lattice constant

nm

Angle

(°)

Volume

nm3

Ef

eV·atom-1

Ec

eV·atom-1

fccTaC, this worka¯ =0.44781α = β = γ = 90.000.71839-0.5962-8.5998
TaC[34]a = 0.447-0.59
Ta0.75W0.25Ca¯ = 0.44543

α = 90.00,

β = 89.99,

γ = 90.00

0.70699-0.3759-8.6364
Ta0.5W0.5Ca¯ = 0.44339

α = 89.79,

β = 90.19,

γ = 90.06

0.69731-0.1566-8.2123
Ta0.25W0.75Ca¯ = 0.44096

α = β = 90.00,

γ = 90.06

0.685900.0565-8.3138
WCa¯ = 0.43821α = β = γ = 90.000.673200.2909-7.8169
hcpTa2C

a = b = 0.31249,

c = 0.49593

α = β = 90.00,

γ = 120.00

0.33551-0.6163-8.6566
(P3¯m1, this work)
Ta2C (P3¯m1)[34]

a = b = 0.311,

c = 0.495

γ = 120-0.60
Ta0.75W0.25C

a = 0.45263,

b = 0.45262,

c = 0.43127

α = 89.94,

β =90.08,

γ = 120.00

0.61212-0.1640-8.1946
Ta0.5W0.5C

a = 0.44731,

b = 0.44718,

c = 0.43034

α = 89.93,

β = 89.98,

γ = 120.00

0.59638-0.1561-8.2137
Ta0.25W0.75C

a = 0.44306,

b = 0.44305,

c = 0.42889

α = 90.00,

β = 89.99,

γ = 119.99

0.58335-0.1573-8.2381
WC

a = b =0.43868,

c = 0.42730

α = β = 90.00,

γ = 120.00

0.56968-0.1543-8.2621
表2  含W复合碳化钽结构的晶体参数、Ef和Ec
图3  不同结构含W复合碳化钽的Ec和Ef
Carbide (fcc)

C11 (C¯11)

GPa

C12 (C¯12)

GPa

C44 (C¯44)

GPa

G

GPa

B

GPa

E

GPa

HV

GPa

G / Bν
TaC, this work72013415420033050021.80.6070.25
TaC[34]737141175216.90339.6724.53
Ta0.75Mo0.25C66813815216730242320.90.6050.25
Ta0.5Mo0.5C57616514615131038917.00.5540.27
Ta0.25Mo0.75C58117412312233932713.20.4860.29
MoC684166702003314997.00.3600.34
Ta0.75W0.25C71513915617931045021.50.6030.25
Ta0.5W0.5C63015014715634140718.80.5770.26
Ta0.25W0.75C61120713212937034612.40.4580.30
WC769170672003305007.00.3480.34
表3  fcc结构复合碳化钽的弹性常数和力学性质
Carbide (hcp)C11C12C13C33C44
Ta2C (P3¯m1, this work)480143138498120
Ta2C (P3¯m1)[34]479164149504133
Ta0.75Mo0.25C511194138764120
Ta0.5Mo0.5C532203151783157
Ta0.25Mo0.75C568206159811203
MoC618213159854263
Ta0.75W0.25C537197138787130
Ta0.5W0.5C581209154823181
Ta0.25W0.75C621224164878235
WC699232167953302
表4  hcp结构复合碳化钽的弹性常数 (GPa)

Carbide

(hcp)

G

GPa

B

GPa

E

GPa

Hv

GPa

G / B

GPa

ν
Ta2C (P3¯m1, this work)14925537416.90.5830.26
Ta2C (P3¯m1)[34]148.08264.6615.87
Ta0.75Mo0.25C16030040715.60.5320.27
Ta0.5Mo0.5C18031545418.80.5730.26
Ta0.25Mo0.75C20933051723.60.6320.24
MoC24634859730.30.7060.21
Ta0.75W0.25C17131043317.20.5520.27
Ta0.5W0.5C20333350722.10.6090.25
Ta0.25W0.75C23435657626.80.6580.23
WC28238568134.70.7320.21
表5  hcp结构复合碳化钽的力学性质
图4  不同结构含Mo复合碳化钽的力学性质
图5  不同结构含W复合碳化钽的力学性质
图6  不同结构复合碳化钽的总态密度和投影态密度
图7  不同结构复合碳化钽的金属丰度(fm)
Crystal structureCarbideCTaMoW
fccTaC1.7981-1.7982
Ta0.75Mo0.25C1.6594-1.8032-1.2279
Ta0.5Mo0.5C1.5107-1.7975-1.2240
Ta0.25Mo0.75C1.4359-1.8233-1.3068
MoC1.3520-1.3520
Ta0.75W0.25C1.6932-1.7852-1.4175
Ta0.5W0.5C1.5430-1.5437
Ta0.25W0.75C1.5538-1.8413-1.4579
WC1.5449-1.5449
hcpTa2C1.8033-0.9016
Ta0.75Mo0.25C1.4781-1.6082-1.1061
Ta0.5Mo0.5C1.3812-1.6431-1.1380
Ta0.25Mo0.75C1.3137-1.6530-1.1950
MoC1.1998-1.1998
Ta0.75W0.25C1.5063-1.6027-1.2308
Ta0.5W0.5C1.4430-1.6329-1.2666
Ta0.25W0.75C1.4100-1.6492-1.3263
WC1.3852-1.3852
表6  不同结构复合碳化钽中各原子的平均Bader电荷
1 Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors [J]. J. Electrochem. Soc., 2003, 150: A292
2 Mani G, Porter D, Grove K, et al. A comprehensive review of biological and materials properties of tantalum and its alloys [J]. J. Biomed. Mater. Res., 2022, 110A: 1291
3 Massot L, Chamelot P, Taxil P. Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate [J]. J. Alloys Compd., 2006, 424: 199
4 Wang Z H. Advances on surface treatment process of tantalum [J]. Heat Treat. Met., 2024, 49: 259
4 王哲昊. 金属钽表面处理工艺进展 [J]. 金属热处理, 2024, 49: 259
5 Carette L, Jacquet P, Cotton D, et al. (TaC/Ta2C) bilayer formed on carburized and annealed tantalum; development of a numerical growth model [J]. Appl. Surf. Sci., 2019, 467-468: 84
6 Zhao Z Y, Cao L, Liang F, et al. A new strategy for preparing carbide coatings on easily oxidized tantalum by non-vacuum carburizing: Fe-coating-mediated carburization [J]. Vacuum, 2024, 221: 112951
7 Tang Q H, Zhuang X L, Fang J F, et al. Surface carburising of tantalum and its alloys [J]. Rare. Met., 1991, (2): 116
7 唐全红, 庄祥麟, 方金法 等. 钽及其合金的表面渗碳强化 [J]. 稀有金属, 1991, (2): 116
8 Zheng X. Surface treatment to improve the corrosion resistance of tantalum [J]. Rare. Met. Lett., 2002, (4): 21
8 郑 欣. 提高钽耐蚀性的表面处理法 [J]. 稀有金属快报, 2002, (4): 21
9 Zhou H L, Hu Y, Zhu K W, et al. Surface modification of tantalum sheets by methane plasma carburizing [J]. Chin. J. Vac. Sci. Technol., 2018, 38A: 48
9 周寰林, 胡 殷, 朱康伟 等. 钽表面的甲烷等离子渗碳改性技术研究 [J]. 真空科学与技术学报, 2018, 38: 48
10 Zhou H L. Study of ionic carburisation modification of tantalum surfaces [D]. Mianyang: China Academy of Engineering Physics, 2017
10 周寰林. 钽表面离子渗碳改性研究 [D]. 绵阳: 中国工程物理研究院, 2017
11 Li J, Yan X D, Yang Y, et al. Vacuum carburization process of Ta and Ta-W alloys [J]. Chin. J. Rare Met., 2018, 42: 925
11 李 佳, 闫晓东, 杨 银 等. Ta及Ta-W合金真空渗碳工艺研究 [J]. 稀有金属, 2018, 42: 925
12 Hui P F. Microstructure and properties of carbide coatings on metal (Ta, Mo, Ti6Al4V) surface prepared by interstitial carburization [D]. Xi'an: Xi'an University of Technology, 2019
12 惠鹏飞. 间隙原子渗碳法制备金属(Ta、Mo、Ti6Al4V)表面碳化层的组织和性能研究 [D]. 西安: 西安理工大学, 2019
13 Zhang C, Yin H Q, Du Y, et al. Thermodynamic modeling of the Ta-Mo-C ternary system [J]. Calphad, 2017, 59: 99
14 Frisk K. A thermodynamic analysis of the Ta-W-C and the Ta-W-C-N systems [J]. Int. J. Mater. Res., 1999, 90: 704
15 Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films [J]. Nature, 2003, 422: 506
16 Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides [J]. Adv. Funct. Mater., 2013, 23: 2185
17 Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nat. Commun., 2018, 9: 4980
doi: 10.1038/s41467-018-07160-7 pmid: 30478375
18 Liu R L, Li D Y. Electron work function as an indicator for tuning the bulk modulus of MC carbide by metal-substitution: A first-principles computational study [J]. Scr. Mater., 2021, 204: 114148
19 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
20 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
21 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
22 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
23 Liu Z T Y, Gall D, Khare S V. Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides [J]. Phys. Rev., 2014, 90B: 134102
24 Yang Y, Wang W, Gan G Y, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation [J]. Phys. Rev., 2018, 550B: 163
25 Tasnádi F, Odén M, Abrikosov I A. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence [J]. Phys. Rev., 2012, 85B: 144112
26 Hossain M D, Borman T, Kumar A, et al. Carbon stoichiometry and mechanical properties of high entropy carbides [J]. Acta Mater., 2021, 215: 117051
27 Wu Z J, Zhao E J, Xiang H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Phys. Rev., 2007, 76B: 054115
28 Shi Y J, Du Y L, Chen G. First-principles study on the elastic and electronic properties of hexagonal ε-Fe3N [J]. Comput. Mater. Sci., 2013, 67: 341
29 Hill R. The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
30 Chen X Q, Niu H Y, Li D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19: 1275
31 Van De Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: A user guide [J]. Calphad, 2002, 26: 539
32 Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
pmid: 10042897
33 Mattheiss L F, Hamann D R. Bulk and surface electronic structure of hexagonal WC [J]. Phys. Rev., 1984, 30B: 1731
34 Yu X X, Weinberger C R, Thompson G B. Ab initio investigations of the phase stability in tantalum carbides [J]. Acta Mater., 2014, 80: 341
35 Liu R L, Zhang D, Tang Y Q, et al. (W1 - x, Mx ) C carbides with desired combinations of compatible density and properties—A first-principles study [J]. J. Am. Ceram. Soc., 2021, 104: 4239
36 Edström D, Sangiovanni D G, Hultman L, et al. Elastic properties and plastic deformation of TiC- and VC-based pseudobinary alloys [J]. Acta Mater., 2018, 144: 376
37 Zhao S J. Defect energetics and stacking fault formation in high-entropy carbide ceramics [J]. J. Eur. Ceram. Soc., 2022, 42: 5290
38 Shao L, Jiang H H, Xu C R, et al. The lattice distortion, mechanical and thermodynamic properties of A(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 (A = Sr, Ba) high-entropy perovskite with B-site disorder: First principles prediction [J]. Mater. Des., 2022, 224: 111308
39 Blakemore J S. Solid State Physics [M]. Cambridge: Cambridge University Press, 1985: 1
[1] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[2] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[3] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[4] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[5] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[6] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[7] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[8] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[9] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[10] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[11] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[12] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[13] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[14] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[15] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.