Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 499-508    DOI: 10.11900/0412.1961.2024.00367
  研究论文 本期目录 | 过刊浏览 |
Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响
王升1, 朱彦丞1, 潘虎成1(), 李景仁1, 曾志浩1, 秦高梧1,2()
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2 沈阳化工大学 战略材料与部件研究中心 沈阳 110142
Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy
WANG Sheng1, ZHU Yancheng1, PAN Hucheng1(), LI Jingren1, ZENG Zhihao1, QIN Gaowu1,2()
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Research Center for Strategic Materials and Components, Shenyang University of Chemical Technology, Shenyang 110142, China
引用本文:

王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
Sheng WANG, Yancheng ZHU, Hucheng PAN, Jingren LI, Zhihao ZENG, Gaowu QIN. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. Acta Metall Sin, 2025, 61(3): 499-508.

全文: PDF(4149 KB)   HTML
摘要: 

为了研究添加Yb元素对变形镁合金的作用,本工作研究了Yb含量(0%~1.0%,质量分数)对Mg-9Gd-4Y-1.2Zn-0.3Zr (GWZK)合金微观组织、室温和高温力学性能的影响。对固溶、挤压和时效处理后镁合金样品进行力学性能测试和微观组织表征。结果表明,GWZK-0.2Yb合金综合力学性能最佳,室温下屈服强度为456 MPa,抗拉强度为509 MPa,与GWZK-0Yb合金相比其屈服强度提高了约45 MPa。GWZK-0.2Yb合金在250 ℃高温下也具有326 MPa的高屈服强度和10.6%的高延伸率,与GWZK-0Yb合金相比实现了强塑性的协同提升。微观组织分析结果表明,微量Yb (0.2%)的添加抑制了合金中长周期堆垛有序(LPSO)相的形成,并促进了后续时效过程中β′和γ′相的析出,其强度提升主要来源于时效后α-Mg基体内的层状LPSO、致密析出的β′和γ′相。中等含量Yb (0.5%)的添加同时降低了合金的室温和高温延伸率。当Yb含量为1.0%时,GWZK合金的室温及高温强度和塑性同时降低,主要因为引入了更多的β相,减少了合金后续时效过程中析出的β′和γ′相的数密度。

关键词 变形镁合金力学性能组织演变长周期有序堆垛结构相Yb合金化    
Abstract

To examine the effects of Yb addition on wrought Mg alloys, this study evaluates the influence of Yb content (0%-1.0%, mass fraction) on the microstructure, room-temperature, and high-temperature mechanical properties of the Mg-9Gd-4Y-1.2Zn-0.3Zr (mass fraction, %) alloy (GWZK). Mechanical performance tests and microstructural characterizations were conducted on alloy samples after solid solution treatment, extrusion, and aging. The results reveal that the GWZK-0.2Yb alloy exhibits superior mechanical properties, achieving tensile yield strength (TYS) of 456 MPa, which is an increase of approximately 45 MPa compared to the Yb-free GWZK-0Yb sample, and an ultimate tensile strength of 509 MPa. Furthermore, at 250 oC, the GWZK-0.2Yb alloy demonstrates a high yield strength of 326 MPa and ductility of 10.6%, indicating a synergistic improvement in strength and plasticity relative to the Yb-free sample. Microstructural analysis shows that the addition of 0.2%Yb suppresses the formation of long-period stacking ordered (LPSO) phases in the GWZK alloy while promoting the precipitation of β′ and γ′ phases during aging. The enhancement in strength is primarily attributed to the lamellar LPSO within the α-Mg matrix post-aging, as well as the dense precipitation of β′ and γ′ phases. However, increasing the Yb content to 0.5% reduces ductility at both room and high temperatures, primarily due to the high volume fraction of brittle β phases. Further increasing the Yb content to 1.0% leads to simultaneous decrease in strength and ductility at both temperature ranges. This degradation is attributed to the increased presence of the β phase, which reduces the number density of β′ and γ′ phases precipitated during the aging of the GWZK-1.0Yb alloy.

Key wordswrought Mg alloy    mechanical property    microstructure evolution    long-period stacking ordered phase    Yb alloying
收稿日期: 2024-11-04     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2023YFB3710900);国家自然科学基金项目(U2167213);中央高校基本科研业务费项目(N2202020);兴辽英才项目(XLYC2203202)
通讯作者: 潘虎成,panhc@atm.neu.edu.cn,主要从事高性能镁合金设计制备及变形和强化机制研究;
秦高梧,qingw@smm.neu.edu.cn,主要从事计算材料学辅助的新材料设计研究
Corresponding author: PAN Hucheng, professor, Tel: 13166643462, E-mail: panhc@atm.neu.edu.cn;
QIN Gaowu, professor, Tel: (024)83691565, E-mail: qingw@smm.neu.edu.cn
作者简介: 王 升,男,2000年生,博士生
图1  峰时效态GWZK-xYb合金的室温及250 ℃高温工程应力-应变曲线、挤压态GWZK-xYb合金的室温工程应力-应变曲线及高强度Mg-Gd系合金强度对比[20~26]

Alloy

PA RTPA ETES RT

TYS

MPa

UTS

MPa

EL

%

TYS

MPa

UTS

MPa

EL

%

TYS

MPa

UTS

MPa

EL

%

GWZK-0Yb4114716.63103577.734941411.1
GWZK-0.2Yb4565094.332637310.63243949.6
GWZK-0.5Yb4514961.93273799.03534095.0
GWZK-1.0Yb4184431.73123445.83634083.5
表1  峰时效态GWZK-xYb合金的室温和250 ℃高温拉伸性能及挤压态GWZK-xYb合金的室温拉伸性能
图2  固溶态GWZK-xYb合金的SEM像及Yb元素的EDS面分布图
PointMgGdYZnYb
A88.733.492.954.820
B89.903.072.544.360.14
C89.113.652.674.360.22
D83.357.223.095.530.81
E81.726.803.547.000.94
F78.516.314.076.144.98
表2  图2中各点相对应的EDS结果 (atomic fraction / %)
图 3  挤压态GWZK-xYb合金的OM像
图4  挤压态样品的SEM像及不同样品中微米级第二相的体积分数
PointMgGdYZnYb
G87.803.503.554.950.20
H83.956.713.565.130.65
表3  图4中各点相对应的EDS结果 (atomic fraction / %)
图5  峰时效态GWZK-xYb合金的TEM表征
图6  GWZK-0.2Yb合金的高角度环形暗场-扫描透射电镜(HAADF-STEM)像、EDS面分布图及SAED花样
1 Zheng X B, Du W B, Wang Z H, et al. Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5Zr alloy on the route of extrusion, rolling and aging [J]. Mater. Lett., 2018, 212: 155
2 Wang S, Pan H C, Xie D S, et al. Grain refinement and strength enhancement in Mg wrought alloys: A review [J]. J. Magnes. Alloy., 2023, 11: 4128
3 You S H, Huang Y D, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magnes. Alloy., 2017, 5: 239
4 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
4 潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
5 Zha M, Wang S Q, Fang Y, et al. Advancement in research of rolled magnesium alloys with high performance [J]. J. Netshape Form. Eng., 2020, 12(5): 20
5 查 敏, 王思清, 方 圆 等. 高性能轧制镁合金研究进展 [J]. 精密成形工程, 2020, 12(5): 20
6 Ding W J, Zeng X Q. Research and applications of magnesium in China [J]. Acta Metall. Sin., 2010, 46: 1450
6 丁文江, 曾小勤. 中国Mg材料研发与应用 [J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
7 Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
7 李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
8 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
8 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
9 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
10 Li X, Qi W, Zheng K, et al. Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion [J]. J. Magnes. Alloy., 2013, 1: 54
11 Qin G W, Xie H B, Pan H C, et al. A new class of ordered structure between crystals and quasicrystals [J]. Acta Metall. Sin., 2018, 54: 1490
doi: 10.11900/0412.1961.2018.00357
11 秦高梧, 谢红波, 潘虎成 等. 一类介于晶体与准晶体之间的有序结构 [J]. 金属学报, 2018, 54: 1490
doi: 10.11900/0412.1961.2018.00357
12 Xu C, Zheng M Y, Xu S W, et al. Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing [J]. Mater. Sci. Eng., 2012, A547: 93
13 Zeng X Q, Wu Y J, Peng L M, et al. LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy [J]. Acta Metall. Sin., 2010, 46: 1041
13 曾小勤, 吴玉娟, 彭立明 等. Mg-Gd-Zn-Zr合金中的LPSO结构和时效相 [J]. 金属学报, 2010, 46: 1041
doi: 10.3724/SP.J.1037.2009.00833
14 Fan M Y, Cui Y, Zhang Y, et al. Achieving high strength-ductility synergy in a Mg97Y1Zn1Ho1 alloy via a nano-spaced long-period stacking-ordered phase [J]. J. Magnes. Alloy., 2023, 11: 1321
15 Zhang D D, Yang S, Meng F Z, et al. Compressive creep behavior of extruded Mg-4Sm-2Yb-0.6Zn-0.4Zr alloy [J]. Mater. Sci. Eng., 2021, A809: 140929
16 Matsuda M, Ando S, Nishida M. Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase [J]. Mater. Trans., 2005, 46: 361
17 Tong L B, Chu J H, Sun W T, et al. Achieving an ultra-high strength and moderate ductility in Mg-Gd-Y-Zn-Zr alloy via a decreased-temperature multi-directional forging [J]. Mater. Charact., 2021, 171: 110804
18 Zhang D D, Zhang D P, Bu F Q, et al. Excellent ductility and strong work hardening effect of as-cast Mg-Zn-Zr-Yb alloy at room temperature [J]. J. Alloy. Compd., 2017, 728: 404
19 Xie H, Wu G H, Zhang X L, et al. The role of Yb content on the microstructural evolution and mechanical characteristics of cast Mg-9Gd-0.5Zn-0.2Zr alloy [J]. Mater. Sci. Eng., 2021, A817: 141292
20 Yu Z J, Xu C, Meng J, et al. Microstructure evolution and mechanical properties of a high strength Mg-11.7Gd-4.9Y-0.3Zr (wt%) alloy prepared by pre-deformation annealing, hot extrusion and ageing [J]. Mater. Sci. Eng., 2017, A703: 348
21 Yan Z X, Yang Q, Ma R, et al. Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg-Gd-Sm-Zr extruded alloys [J]. Mater. Sci. Eng., 2022, A831: 142264
22 Yan Z H, Yu Y D, Qian J H, et al. Fabrication of high-strength Mg-Gd-Nd-Zn-Sn-Zr alloy via extrusion and aging [J]. Met. Mater. Int., 2021, 27: 4182
23 Liu Y H, Zhang Z R, Wang J, et al. A novel Mg-Gd-Y-Zn-Cu-Ni alloy with excellent combination of strength and dissolution via peak-aging treatment [J]. J. Magnes. Alloy., 2023, 11: 720
24 Xue Z Y, Ren Y J, Luo W B, et al. Effect of aging treatment on the precipitation behavior and mechanical properties of Mg-9Gd-3Y-1.5Zn-0.5Zr alloy [J]. J. Mater. Eng. Perform., 2017, 26: 5963
25 Zhang Y, Rong W, Wu Y J, et al. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation [J]. J. Mater. Sci. Technol., 2020, 54: 160
doi: 10.1016/j.jmst.2020.04.031
26 Zhang D D, Liu C M, Jiang S N, et al. Effects of extrusion process on microstructure, precipitates and mechanical properties of Mg-Gd-Y-Zr-Ag alloys [J]. Mater. Sci. Eng., 2022, A856: 143990
27 Wang K, Wang J F, Dou X X, et al. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52: 72
doi: 10.1016/j.jmst.2020.04.013
28 Liu H, Bai J, Yan K, et al. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys during annealing at 773K [J]. Mater. Des., 2016, 93: 9
29 Fan T W, Tang B Y, Peng L M, et al. First-principles study of long-period stacking ordered-like multi-stacking fault structures in pure magnesium [J]. Scr. Mater., 2011, 64: 942
30 Mansoor A, Du W B, Yu Z J, et al. Improved mechanical performance of double-pass extruded Mg-Gd-Er-Zr alloys with various rare earth contents [J]. Mater. Sci. Eng., 2022, A840: 142922
31 Li S J, Jin J F, Song Y H, et al. Multimodal microstructure of Mg-Gd-Y alloy through an integrated simulation of “process-structure-property” [J]. Acta Metall. Sin., 2022, 58: 114
31 李少杰, 金剑锋, 宋宇豪 等. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织 [J]. 金属学报, 2022, 58: 114
doi: 10.11900/0412.1961.2021.00222
32 Luo J, Yan H, Lu L W, et al. Cold rollability improvement by twinning and twin-slip synergy in an Mg-Zn-Gd alloy with rare earth texture [J]. J. Alloys Compd., 2021, 883: 160813
[1] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[2] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[3] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[4] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[5] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[6] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[7] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[8] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[9] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[10] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[11] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[12] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[13] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[14] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[15] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.