Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 509-520    DOI: 10.11900/0412.1961.2024.00324
  研究论文 本期目录 | 过刊浏览 |
热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响
庞梦瑶1, 巫瑞智1(), 马晓春1(), 靳思远1, 于哲1, Boris Krit2
1 哈尔滨工程大学 超轻材料与表面技术教育部重点实验室 哈尔滨 150001
2 Moscow Aviation Institute, National Research University, Moscow 125993, Russia
Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy
PANG Mengyao1, WU Ruizhi1(), MA Xiaochun1(), JIN Siyuan1, YU Zhe1, Boris Krit2
1 Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
2 Moscow Aviation Institute, National Research University, Moscow 125993, Russia
引用本文:

庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
Mengyao PANG, Ruizhi WU, Xiaochun MA, Siyuan JIN, Zhe YU, Krit Boris. Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy[J]. Acta Metall Sin, 2025, 61(3): 509-520.

全文: PDF(6038 KB)   HTML
摘要: 

在油气生产中,可降解压裂材料可提高油气资源生产效率。对于快速降解的压裂材料,在保持高降解速率的同时,还要求具有较好的力学性能。本工作在前期获得具有高腐蚀速率的Mg-8Li-4Gd-1.5Ni铸态合金的基础上,对合金进行热轧加工,通过调控变形组织进一步提升合金的力学性能和腐蚀速率。结果表明,在轧制过程中,合金中的网状长周期堆垛有序结构相(LPSO相)逐渐转变为平行的纤维状,变形量达90%时LPSO相会形成较短的纤维状。合金在热轧过程中出现再结晶组织,GdNi3颗粒细化。变形量70%时合金抗拉强度最高,达217 MPa,延伸率为17%。在3%KCl溶液中,变形量为90%时合金在25及93 ℃时均有最高的腐蚀速率,失重速率分别为0.47及3.63 mg/(cm2·min),25 ℃时腐蚀电流密度最高,为5.34 mA/cm2。平行分布的LPSO相对合金的腐蚀有阻碍作用,但是LPSO相的弯曲、第二相的破碎、再结晶和位错密度的增加使合金内部的化学活性增强,导致腐蚀速率逐渐增高。热轧使合金中位错密度增加,晶粒尺寸减小,并发生再结晶,这些组织演变导致合金发生加工硬化和细晶强化,使得合金力学性能提升。

关键词 Mg-Li合金压裂轧制腐蚀行为力学性能    
Abstract

Oil and gas resources have become strategic assets, highlighting the need to improve production efficiency. Segmented fracturing technology effectively addresses the challenge of low fracturing efficiency and is widely used in oil and gas extraction. Therefore, the demand for degradable fracturing materials has increased rapidly to enhance oil and gas production efficiency. Rapidly degradable fracturing materials must achieve high degradation rates, while maintaining strong mechanical properties to ensure effective petroleum fracturing operations. Building on previous research on as-cast Mg-8Li-4Gd-1.5Ni alloys that are known for their high corrosion rates, this study performed hot rolling at 250 oC, with deformations of 30%, 50%, 70%, and 90%. Further, SEM, TEM, tensile mechanical performance testing, electrochemical testing, and hydrogen evolution measurements were used to examine the microstructure, mechanical properties, and corrosion behavior of the alloys. Results indicated that the microstructure underwent continuous elongation during rolling, and the networked long-period stacking ordered (LPSO) phases gradually transformed into parallel fibrous structures. At a deformation of 90%, the elongated fibrous LPSO phases were fractured into shorter segments, accompanied by an increase in the size and number of gaps between the LPSO phases. Recrystallized structures developed during hot rolling, accompanied by the refinement of GdNi3 particles and an increase in the dislocation density. As the deformation increased, the tensile strength of the alloy initially increased and then decreased. The alloy exhibited the highest tensile strength of 217 MPa and an elongation of 17% at a deformation of 70%. In a 3%KCl solution, the mass loss rate, hydrogen evolution volume, and hydrogen evolution rate of the alloy increased steadily, as the deformation increased. At a deformation of 90%, the alloy exhibited the highest corrosion rates at 25 and 93 oC, with mass loss rates of 0.47 and 3.63 mg/(cm2·min), respectively. Compared with the as-cast alloy, the weight loss rate of the hot-rolled alloy at 25 oC increased by 30.55%, whereas at 93 oC, it was 7.72 times greater than at 25 oC. The corrosion current density reached a maximum of 5.34 mA/cm2 at 25 oC. The corrosion began with pitting and gradually transitioned to filiform corrosion. The corrosion extended along the rolling direction at higher deformations. The parallel distribution of LPSO phases inhibited alloy corrosion. However, at a deformation of 90%, the fracture of the LPSO phases increased the number of galvanic corrosion sites. This fracture and the larger gaps between the LPSO phases reduced the protective effect. In addition, the bending of the LPSO phases, fragmentation of the secondary phases, recrystallization, and increased dislocation density enhanced the chemical reactivity of the alloy, resulting in a gradual increase in the corrosion rate. Hot rolling increased the dislocation density, reduced the grain size, and induced recrystallization in the alloy. These microstructural modifications resulted in work hardening and grain refinement, thereby improving the mechanical properties of the alloy.

Key wordsMg-Li alloy    fracturing    rolling    corrosion behavior    mechanical property
收稿日期: 2024-09-12     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52261135538);国家自然科学基金项目(U21A2049);国家自然科学基金项目(52271098);国家自然科学基金项目(U23A20541);俄罗斯科学基金项目(23-49-00098);中国博士后科学基金项目(GZC20233424);黑龙江省博士后基金项目(LBH-Z23116)
通讯作者: 巫瑞智,rzwu@hrbeu.edu.cn,主要从事镁/铝轻质金属结构材料的研究;
马晓春,maxiaochun@hrbeu.edu.cn,主要从事Mg-Li合金材料的腐蚀与防护研究
Corresponding author: WU Ruizhi, professor, Tel: (0451)83519890, E-mail: rzwu@hrbeu.edu.cn;
MA Xiaochun, Tel: (0451)83519890, E-mail: maxiaochun@hrbeu.edu.cn
作者简介: 庞梦瑶,女,1993年,博士生
图1  铸态和250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金微观组织的SEM像
图2  250 ℃下90%轧制变形量Mg-8Li-4Gd-1.5Ni合金的TEM像
图3  250 ℃下90%轧制变形量Mg-8Li-4Gd-1.5Ni合金的TEM像及EDS结果
图4  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金的工程应力-应变曲线
图5  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金的断口形貌
图6  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金在3%KCl溶液中的失重速率、析氢体积和析氢速率
图7  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金在3%KCl溶液中浸泡2和30 s后轧制方向-法向(RD-ND)平面上表面形貌的SEM像,浸泡30 s后腐蚀产物的EDS线扫描结果,及去除腐蚀产物后腐蚀表面形貌的SEM像
图8  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金在3%KCl溶液中浸泡后2和30 s后轧制方向-横向(RD-TD)平面上表面形貌的SEM像,及去除腐蚀产物后腐蚀表面形貌的SEM像
图9  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金在3%KCl溶液中浸泡1 h后RD-ND面上表面形貌的SEM像及EDS面扫描结果
图10  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金的极化曲线及其拟合结果
图11  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金在3.0%KCl溶液中的电化学阻抗谱(EIS)及等效电路图

Deformation

%

Rs

Ω·cm2

CPE1

sn1·Ω-1·cm-2

n1

Rf

Ω·cm2

CPE2

sn2·Ω-1·cm-2

n2

Rct

Ω·cm2

L

H

3032.944.84 × 10-40.633.227.06 × 10-50.965.952.31
5031.246.05 × 10-50.823.281.07 × 10-40.925.462.17
7031.461.11 × 10-40.802.671.01 × 10-40.773.941.61
9031.426.57 × 10-20.831.331.13 × 10-40.992.711.37
表1  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金在3.0%KCl溶液中的EIS拟合结果
图12  250 ℃下不同轧制变形量Mg-8Li-4Gd-1.5Ni合金在3.0%KCl溶液中的腐蚀机理示意图
1 Wang J F, Gao S Q, Liu X Y, et al. Enhanced mechanical properties and degradation rate of Mg-Ni-Y alloy by introducing LPSO phase for degradable fracturing ball applications [J]. J. Magnes. Alloy., 2020, 8: 127
2 Sun J, Du W B, Fu J J, et al. A review on magnesium alloys for application of degradable fracturing tools [J]. J. Magnes. Alloy., 2022, 10: 2649
3 Wang J, Li T, Li H X, et al. Effect of trace Ni addition on microstructure, mechanical and corrosion properties of the extruded Mg-Gd-Y-Zr-Ni alloys for dissoluble fracturing tools [J]. J. Magnes. Alloy., 2021, 9: 1632
doi: 10.1016/j.jma.2020.08.019
4 Wu Z W, Cui C Z, Jia P F, et al. Advances and challenges in hydraulic fracturing of tight reservoirs: A critical review [J]. Energy Geosci., 2022, 3: 427
5 Wang J H, Du C L, Wu R Z, et al. Effect of Li content on electromagnetic shielding effectiveness in binary Mg-Li alloys: A combined experimental and first-principles study [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 3891
6 Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes [J]. Mater. Charact., 2020, 160: 110135
7 Ma X C, Jin S Y, Wu R Z, et al. Corrosion behavior of Mg-Li alloys: A review [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3228
8 Peng X, Liu W C, Wu G H. Strengthening-toughening methods and mechanisms of Mg-Li alloy: A review [J]. Rare Met., 2022, 41: 1176
9 Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China [J]. Energy Geosci., 2020, 1: 55
10 Liu B S, Dong G H, Zhang Y Z, et al. Research progress of soluble magnesium alloy for fracturing temporary plugging tools [J]. Chin. J. Nonferrous Met., 2022, 32: 3609
10 刘宝胜, 董舸航, 张跃忠 等. 压裂暂堵工具用可溶镁合金的研究进展 [J]. 中国有色金属学报, 2022, 32: 3609
11 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
12 Hanke L, Jessen L K, Weisheit F, et al. Structural characterisation and degradation of Mg-Li thin films for biodegradable implants [J]. Sci. Rep., 2023, 13: 12572
doi: 10.1038/s41598-023-39493-9 pmid: 37537223
13 Wang B J, Xu D K, Cai X, et al. Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg-8 wt.%Li alloy [J]. J. Magnes. Alloy., 2021, 9: 560
doi: 10.1016/j.jma.2020.02.020
14 Tian G Y, Wang J S, Xue C P, et al. Improving corrosion resistance of Mg-Li alloys by Sn microalloying [J]. J. Mater. Res. Technol., 2023, 26: 199
15 Wang D, Liu S J, Wu R Z, et al. Synergistically improved damping, elastic modulus and mechanical properties of rolled Mg-8Li-4Y-2Er-2Zn-0.6Zr alloy with twins and long-period stacking ordered phase [J]. J. Alloys Compd., 2021, 881: 160663
16 Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
17 Li J G, Yang Y, Deng H, et al. Microstructure and corrosion behavior of as-extruded Mg-6.5Li-xY-yZn alloys [J]. J. Alloys Compd., 2020, 823: 153839
18 Wang L N, Yin Y X, Shi Z Z, et al. Research progress on biocompatibility evaluation of biomedical degradable zinc alloys [J]. Acta Metall. Sin., 2023, 59: 319
doi: 10.11900/0412.1961.2022.00471
18 王鲁宁, 尹玉霞, 石章智 等. 医用可降解锌合金的生物相容性评价研究进展 [J]. 金属学报, 2023, 59: 319
doi: 10.11900/0412.1961.2022.00471
19 Chen L, Zhao G Q, Chen G J, et al. Numerical simulation and experimental study on porthole die extrusion process of LZ91 Mg-Li alloy [J]. Acta Metall. Sin., 2018, 54: 339
doi: 10.11900/0412.1961.2017.00420
19 陈 良, 赵国群, 陈高进 等. LZ91 Mg-Li合金分流模挤压成形过程数值模拟与实验研究 [J]. 金属学报, 2018, 54: 339
20 Zhan L, Le Y Z, Feng Z J, et al. Effect of Gd addition on mechanical and microstructural properties of Mg-xGd-2.6Nd-0.5Zn-0.5Zr cast alloys [J]. China Foundry, 2020, 17: 212
21 Li Z L, Zhang X L, Tian D K. Effect of multi-pass compression deformation on microstructure evolution of AZ80 magnesium alloy [J]. Acta Metall. Sin., 2024, 60: 311
doi: 10.11900/0412.1961.2022.00010
21 李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响 [J]. 金属学报, 2024, 60: 311
doi: 10.11900/0412.1961.2022.00010
22 Wang B J, Xu K, Xu D K, et al. Anisotropic corrosion behavior of hot-rolled Mg-8wt.%Li alloy [J]. J. Mater. Sci. Technol., 2020, 53: 102
23 Liu Y H, Li H X, Zhang Z R, et al. Effect of Cu micro-alloying on the microstructure, mechanical and corrosion properties of Mg-Gd-Y-Zn based alloy applied as plugging tools [J]. J. Alloys Compd., 2023, 939: 168768
24 Ma K, Wang J F, Ren J, et al. Enhanced degradation properties of Mg-Y-Ni alloys by tailoring the LPSO morphology for fracturing tools applications [J]. Mater. Charact., 2021, 181: 111489
25 Hu Z, Yin Z, Yin Z, et al. Corrosion behavior characterization of as extruded Mg-8Li-3Al alloy with minor alloying elements (Gd, Sn and Cu) by scanning Kelvin probe force microscopy [J]. Corros. Sci., 2020, 176: 108923
26 Liu J, Yang L X, Zhang C Y, et al. Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys [J]. J. Alloys Compd., 2019, 782: 648
27 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
27 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
28 Sun Y H, Wang R C, Peng C Q, et al. Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt.%) [J]. Corros. Sci., 2020, 167: 108487
29 Pang M Y, Zhong T, Jin S Y, et al. Tailoring the degradation rate of magnesium-lithium alloy with alloying elements of gadolinium and nickel [J]. J. Alloy. Compd., 2024, 976: 173115
30 Feng A H, Chen Q, Wang J, et al. Thermal stability of microstructures in low-density Ti2AlNb-based alloy hot rolled plate [J]. Acta Metall. Sin., 2023, 59: 777
30 冯艾寒, 陈 强, 王 剑 等. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性 [J]. 金属学报, 2023, 59: 777
doi: 10.11900/0412.1961.2021.00315
31 Wang D, Ma X C, Wu R Z, et al. Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg-Y-Er-Zn-Zr alloy [J]. Mater. Sci. Eng., 2022, A830: 142298
32 Jeong Y S, Kim W J. Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion [J]. Corros. Sci., 2014, 82: 392
33 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
34 Yang S L, Zhong J, Wang J, et al. A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation [J]. J. Mater. Sci. Technol., 2023, 133: 111
doi: 10.1016/j.jmst.2022.04.057
35 Pang Y P, Sun D K, Gu Q F, et al. Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended Jonhson-Mehl-Avrami-Kolomogorov model with analytical solutions [J]. Cryst. Growth Des., 2016, 16: 2404
36 Huang J F, Song G L, Atrens A, et al. What activates the Mg surface—A comparison of Mg dissolution mechanisms [J]. J. Mater. Sci. Technol., 2020, 57: 204
doi: 10.1016/j.jmst.2020.03.060
37 Chen Y N, Wu L, Yao W H, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating [J]. Corros. Sci., 2022, 194: 109941
38 Pérez P, Cabeza S, Garcés G, et al. Influence of long period stacking ordered phase arrangements on the corrosion behaviour of extruded Mg97Y2Zn1 alloy [J]. Corros. Sci., 2016, 107: 107
39 Zander D, Zumdick N A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys [J]. Corros. Sci., 2015, 93: 222
40 Jin S Y, Zhou J, Wu R Z, et al. Multi-functional superhydrophobic coatings on Mg-Li alloys via SiO2 nano particles assembled surface modification [J]. Surf. Coat. Technol., 2025, 495: 131568
41 Han Z H, Zhang K, Yang J, et al. The anodic role of Ni-containing LPSO phases during the microgalvanic corrosion of Mg98Gd1.5Ni0.5 alloy [J]. J. Mater. Eng. Perform., 2019, 28: 2451
42 Lv Y Z, Liu M, Xu Y, et al. The electrochemical behaviors of Mg-8Li-0.5Y and Mg-8Li-1Y alloys in sodium chloride solution [J]. J. Power Sources, 2013, 239: 265
[1] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[2] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[3] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[4] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[5] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[6] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[7] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[8] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[9] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[10] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[11] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[12] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[13] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[14] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[15] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.