|
|
热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响 |
庞梦瑶1, 巫瑞智1( ), 马晓春1( ), 靳思远1, 于哲1, Boris Krit2 |
1 哈尔滨工程大学 超轻材料与表面技术教育部重点实验室 哈尔滨 150001 2 Moscow Aviation Institute, National Research University, Moscow 125993, Russia |
|
Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy |
PANG Mengyao1, WU Ruizhi1( ), MA Xiaochun1( ), JIN Siyuan1, YU Zhe1, Boris Krit2 |
1 Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China 2 Moscow Aviation Institute, National Research University, Moscow 125993, Russia |
引用本文:
庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
Mengyao PANG,
Ruizhi WU,
Xiaochun MA,
Siyuan JIN,
Zhe YU,
Krit Boris.
Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy[J]. Acta Metall Sin, 2025, 61(3): 509-520.
1 |
Wang J F, Gao S Q, Liu X Y, et al. Enhanced mechanical properties and degradation rate of Mg-Ni-Y alloy by introducing LPSO phase for degradable fracturing ball applications [J]. J. Magnes. Alloy., 2020, 8: 127
|
2 |
Sun J, Du W B, Fu J J, et al. A review on magnesium alloys for application of degradable fracturing tools [J]. J. Magnes. Alloy., 2022, 10: 2649
|
3 |
Wang J, Li T, Li H X, et al. Effect of trace Ni addition on microstructure, mechanical and corrosion properties of the extruded Mg-Gd-Y-Zr-Ni alloys for dissoluble fracturing tools [J]. J. Magnes. Alloy., 2021, 9: 1632
doi: 10.1016/j.jma.2020.08.019
|
4 |
Wu Z W, Cui C Z, Jia P F, et al. Advances and challenges in hydraulic fracturing of tight reservoirs: A critical review [J]. Energy Geosci., 2022, 3: 427
|
5 |
Wang J H, Du C L, Wu R Z, et al. Effect of Li content on electromagnetic shielding effectiveness in binary Mg-Li alloys: A combined experimental and first-principles study [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 3891
|
6 |
Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes [J]. Mater. Charact., 2020, 160: 110135
|
7 |
Ma X C, Jin S Y, Wu R Z, et al. Corrosion behavior of Mg-Li alloys: A review [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3228
|
8 |
Peng X, Liu W C, Wu G H. Strengthening-toughening methods and mechanisms of Mg-Li alloy: A review [J]. Rare Met., 2022, 41: 1176
|
9 |
Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China [J]. Energy Geosci., 2020, 1: 55
|
10 |
Liu B S, Dong G H, Zhang Y Z, et al. Research progress of soluble magnesium alloy for fracturing temporary plugging tools [J]. Chin. J. Nonferrous Met., 2022, 32: 3609
|
10 |
刘宝胜, 董舸航, 张跃忠 等. 压裂暂堵工具用可溶镁合金的研究进展 [J]. 中国有色金属学报, 2022, 32: 3609
|
11 |
Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
|
12 |
Hanke L, Jessen L K, Weisheit F, et al. Structural characterisation and degradation of Mg-Li thin films for biodegradable implants [J]. Sci. Rep., 2023, 13: 12572
doi: 10.1038/s41598-023-39493-9
pmid: 37537223
|
13 |
Wang B J, Xu D K, Cai X, et al. Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg-8 wt.%Li alloy [J]. J. Magnes. Alloy., 2021, 9: 560
doi: 10.1016/j.jma.2020.02.020
|
14 |
Tian G Y, Wang J S, Xue C P, et al. Improving corrosion resistance of Mg-Li alloys by Sn microalloying [J]. J. Mater. Res. Technol., 2023, 26: 199
|
15 |
Wang D, Liu S J, Wu R Z, et al. Synergistically improved damping, elastic modulus and mechanical properties of rolled Mg-8Li-4Y-2Er-2Zn-0.6Zr alloy with twins and long-period stacking ordered phase [J]. J. Alloys Compd., 2021, 881: 160663
|
16 |
Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
|
17 |
Li J G, Yang Y, Deng H, et al. Microstructure and corrosion behavior of as-extruded Mg-6.5Li-xY-yZn alloys [J]. J. Alloys Compd., 2020, 823: 153839
|
18 |
Wang L N, Yin Y X, Shi Z Z, et al. Research progress on biocompatibility evaluation of biomedical degradable zinc alloys [J]. Acta Metall. Sin., 2023, 59: 319
doi: 10.11900/0412.1961.2022.00471
|
18 |
王鲁宁, 尹玉霞, 石章智 等. 医用可降解锌合金的生物相容性评价研究进展 [J]. 金属学报, 2023, 59: 319
doi: 10.11900/0412.1961.2022.00471
|
19 |
Chen L, Zhao G Q, Chen G J, et al. Numerical simulation and experimental study on porthole die extrusion process of LZ91 Mg-Li alloy [J]. Acta Metall. Sin., 2018, 54: 339
doi: 10.11900/0412.1961.2017.00420
|
19 |
陈 良, 赵国群, 陈高进 等. LZ91 Mg-Li合金分流模挤压成形过程数值模拟与实验研究 [J]. 金属学报, 2018, 54: 339
|
20 |
Zhan L, Le Y Z, Feng Z J, et al. Effect of Gd addition on mechanical and microstructural properties of Mg-xGd-2.6Nd-0.5Zn-0.5Zr cast alloys [J]. China Foundry, 2020, 17: 212
|
21 |
Li Z L, Zhang X L, Tian D K. Effect of multi-pass compression deformation on microstructure evolution of AZ80 magnesium alloy [J]. Acta Metall. Sin., 2024, 60: 311
doi: 10.11900/0412.1961.2022.00010
|
21 |
李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响 [J]. 金属学报, 2024, 60: 311
doi: 10.11900/0412.1961.2022.00010
|
22 |
Wang B J, Xu K, Xu D K, et al. Anisotropic corrosion behavior of hot-rolled Mg-8wt.%Li alloy [J]. J. Mater. Sci. Technol., 2020, 53: 102
|
23 |
Liu Y H, Li H X, Zhang Z R, et al. Effect of Cu micro-alloying on the microstructure, mechanical and corrosion properties of Mg-Gd-Y-Zn based alloy applied as plugging tools [J]. J. Alloys Compd., 2023, 939: 168768
|
24 |
Ma K, Wang J F, Ren J, et al. Enhanced degradation properties of Mg-Y-Ni alloys by tailoring the LPSO morphology for fracturing tools applications [J]. Mater. Charact., 2021, 181: 111489
|
25 |
Hu Z, Yin Z, Yin Z, et al. Corrosion behavior characterization of as extruded Mg-8Li-3Al alloy with minor alloying elements (Gd, Sn and Cu) by scanning Kelvin probe force microscopy [J]. Corros. Sci., 2020, 176: 108923
|
26 |
Liu J, Yang L X, Zhang C Y, et al. Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys [J]. J. Alloys Compd., 2019, 782: 648
|
27 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
27 |
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
28 |
Sun Y H, Wang R C, Peng C Q, et al. Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt.%) [J]. Corros. Sci., 2020, 167: 108487
|
29 |
Pang M Y, Zhong T, Jin S Y, et al. Tailoring the degradation rate of magnesium-lithium alloy with alloying elements of gadolinium and nickel [J]. J. Alloy. Compd., 2024, 976: 173115
|
30 |
Feng A H, Chen Q, Wang J, et al. Thermal stability of microstructures in low-density Ti2AlNb-based alloy hot rolled plate [J]. Acta Metall. Sin., 2023, 59: 777
|
30 |
冯艾寒, 陈 强, 王 剑 等. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性 [J]. 金属学报, 2023, 59: 777
doi: 10.11900/0412.1961.2021.00315
|
31 |
Wang D, Ma X C, Wu R Z, et al. Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg-Y-Er-Zn-Zr alloy [J]. Mater. Sci. Eng., 2022, A830: 142298
|
32 |
Jeong Y S, Kim W J. Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion [J]. Corros. Sci., 2014, 82: 392
|
33 |
Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435
pmid: 26480229
|
34 |
Yang S L, Zhong J, Wang J, et al. A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation [J]. J. Mater. Sci. Technol., 2023, 133: 111
doi: 10.1016/j.jmst.2022.04.057
|
35 |
Pang Y P, Sun D K, Gu Q F, et al. Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended Jonhson-Mehl-Avrami-Kolomogorov model with analytical solutions [J]. Cryst. Growth Des., 2016, 16: 2404
|
36 |
Huang J F, Song G L, Atrens A, et al. What activates the Mg surface—A comparison of Mg dissolution mechanisms [J]. J. Mater. Sci. Technol., 2020, 57: 204
doi: 10.1016/j.jmst.2020.03.060
|
37 |
Chen Y N, Wu L, Yao W H, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating [J]. Corros. Sci., 2022, 194: 109941
|
38 |
Pérez P, Cabeza S, Garcés G, et al. Influence of long period stacking ordered phase arrangements on the corrosion behaviour of extruded Mg97Y2Zn1 alloy [J]. Corros. Sci., 2016, 107: 107
|
39 |
Zander D, Zumdick N A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys [J]. Corros. Sci., 2015, 93: 222
|
40 |
Jin S Y, Zhou J, Wu R Z, et al. Multi-functional superhydrophobic coatings on Mg-Li alloys via SiO2 nano particles assembled surface modification [J]. Surf. Coat. Technol., 2025, 495: 131568
|
41 |
Han Z H, Zhang K, Yang J, et al. The anodic role of Ni-containing LPSO phases during the microgalvanic corrosion of Mg98Gd1.5Ni0.5 alloy [J]. J. Mater. Eng. Perform., 2019, 28: 2451
|
42 |
Lv Y Z, Liu M, Xu Y, et al. The electrochemical behaviors of Mg-8Li-0.5Y and Mg-8Li-1Y alloys in sodium chloride solution [J]. J. Power Sources, 2013, 239: 265
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|