Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 287-296    DOI: 10.11900/0412.1961.2022.00650
  研究论文 本期目录 | 过刊浏览 |
Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响
吴炀1,2, 谢昂1,2, 陈胜虎1(), 姜海昌1, 戎利建1
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Corrosion Behavior of NbC and Its Effect on Corrosion Layer Formation in Liquid Lead-Bismuth Eutectic of Nb-Containing Austenitic Stainless Steel
WU Yang1,2, XIE Ang1,2, CHEN Shenghu1(), JIANG Haichang1, RONG Lijian1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chines Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. 含Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
Yang WU, Ang XIE, Shenghu CHEN, Haichang JIANG, Lijian RONG. Corrosion Behavior of NbC and Its Effect on Corrosion Layer Formation in Liquid Lead-Bismuth Eutectic of Nb-Containing Austenitic Stainless Steel[J]. Acta Metall Sin, 2025, 61(2): 287-296.

全文: PDF(3468 KB)   HTML
摘要: 

新型Nb稳定化奥氏体钢被视为铅冷快堆的候选结构材料,在制备或服役过程中会产生初生或二次NbC,NbC在液态铅铋中的腐蚀行为及其对材料耐腐蚀性能的影响目前尚不明确。采用SEM、EPMA、XRD、TEM等手段研究了一种含Nb奥氏体不锈钢分别在550和600 ℃静态饱和氧液态Pb-Bi共晶(LBE)中的腐蚀性能,重点考察了腐蚀过程中初生NbC的演化行为及其对氧化层形成的影响。结果表明,550 ℃下初生NbC的氧化倾向与其在样品中的分布位置有关,位于样品原始表面的NbC易发生氧化,而位于样品内部的NbC则不会发生氧化,这是由于内氧化层中的氧分压尚未达到NbC氧化所需的平衡氧分压。温度提高至600 ℃后,氧分压达到了NbC氧化的平衡氧分压,位于样品原始表面以及样品内部的NbC均会发生氧化。NbC氧化成Nb2O5的Pilling-Bedworth比(PBR)大于2,对周边区域的氧化层产生较大的压应力,导致氧化态NbC周围氧化层中产生微裂纹。同时,NbC氧化伴随着CO2气体的产生,位于样品内部的NbC氧化产生的CO2降低了氧化层致密性,使得氧化层的生长速率加快。

关键词 含Nb奥氏体不锈钢初生NbCPb-Bi腐蚀氧化机制    
Abstract

The lead-cooled fast reactor is considered one of the promising Generation IV nuclear energy systems. Structural materials used in the construction of pressure vessels and internals for this reactor include 300 series austenitic stainless steels. Nb-containing austenitic stainless steels are developed to improve corrosion properties, mechanical properties, and irradiation resistance. However, coarse primary NbC carbides are formed during solidification in these steels and cannot be eliminated through subsequent hot working and heat treatment. Recently, researchers have found different oxidation behaviors between secondary phase particles and the matrix, which affect the material's corrosion properties. However, the oxidation behaviors of primary NbC are rarely reported. This study analyzes the corrosion behaviors of a solution-treated Nb-containing austenitic stainless steel plate after exposure to oxygen-saturated liquid lead-bismuth eutectic (LBE) at 550 and 600 oC using SEM, EPMA, XRD, and TEM. The results show that the oxidation probability of NbC is correlated with its location in the samples at 550 oC. NbC at the initial surface is easily oxidized, while NbC within the interior is difficult to oxidize due to the low equilibrium oxygen partial pressure in the inner oxide layer, which suppresses the oxidation of NbC. However, NbC at the initial surface and within the interior are prone to be oxidized as the temperature increases to 600 oC. Compared to the matrix, NbC oxidizes into Nb2O5, resulting in a higher Pilling-Bedworth ratio (PBR). This leads to high compressive stress and resultant microcrack formation in the surrounding oxide layer. Additionally, the presence of CO2 generated during the oxidation of NbC within the interior reduces the compactness of the oxide layer, leading to a higher growth rate.

Key wordsNb-containing austenitic stainless steel    primary NbC    Pb-Bi corrosion    oxidation mechanism
收稿日期: 2022-12-30     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(51871218);中核集团领创科研项目
通讯作者: 陈胜虎,chensh@imr.ac.cn,主要从事核用结构材料的研发
Corresponding author: CHEN Shenghu, professor, Tel: (024)23971981, E-mail: chensh@imr.ac.cn
作者简介: 吴 炀,男,1997年生,硕士生
图1  固溶态含Nb奥氏体不锈钢样品微观组织的SEM像
图2  固溶态样品经550 ℃饱和氧Pb-Bi共晶(LBE)腐蚀100、500、1000和5000 h后截面形貌的背散射电子(BSE)像
图3  固溶态样品经550 ℃饱和氧LBE腐蚀5000 h后的XRD谱
图4  固溶态样品经550 ℃饱和氧LBE腐蚀5000 h后截面的EPMA元素分布
图5  固溶态样品经550 ℃饱和氧LBE腐蚀5000 h后内氧化层中NbC附近的TEM分析结果
图6  固溶态样品经550 ℃饱和氧LBE腐蚀50 h后表面形貌的SEM像、EDS及XPS分析结果
图7  固溶态样品经600 ℃饱和氧LBE腐蚀500和3000 h后截面形貌的BSE像
图8  固溶态样品经600 ℃饱和氧LBE腐蚀3000 h后截面形貌的SEM像和EDS面扫描图
图9  各种氧化反应的Ellingham-Richardson图
1 Alemberti A, Smirnov V, Smith C F, et al. Overview of lead-cooled fast reactor activities [J]. Prog. Nucl. Energy, 2014, 77: 300
2 Yvon P, Carré F. Structural materials challenges for advanced reactor systems [J]. J. Nucl. Mater., 2009, 385: 217
3 Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
4 Dalle F, Blat-Yrieix M, Dubiez-Le Goff S, et al. Conventional austenitic steels as out-of-core materials for Generation IV nuclear reactors [A]. Structural Materials for Generation IV Nuclear Reactors [M]. Amsterdam: Woodhead Publishing, 2017: 595
5 Wang Q Y, Chen S H, Rong L J. δ-ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
6 Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
7 Lv X L, Chen S H, Wang Q Y, et al. Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel [J]. Metals, 2022, 12: 1421
8 Chen S H, Wang Q Y, Jiang H C, et al. Effect of δ-ferrite on hot deformation and recrystallization of 316KD austenitic stainless steel for sodium-cooled fast reactor application [J]. Acta Metall. Sin., 2024, 60: 367
8 陈胜虎, 王琪玉, 姜海昌 等. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响 [J]. 金属学报, 2024, 60: 367
doi: 10.11900/0412.1961.2022.00039
9 Aydoğdu G H, Aydinol M K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel [J]. Corros. Sci., 2006, 48: 3565
10 Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 oC up to 10 years [J]. J. Nucl. Mater., 2007, 362: 132
11 Vach M, Kuníková T, Dománková M, et al. Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 oC [J]. Mater. Charact., 2008, 59: 1792
12 Plaut R L, Herrera C, Escriba D M, et al. A short review on wrought austenitic stainless steels at high temperatures: Processing, microstructure, properties and performance [J]. Mater. Res., 2007, 10: 453
13 Perron A, Toffolon-Masclet C, Ledoux X, et al. Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations [J]. Acta Mater., 2014, 79: 16
14 Carroll M C, Carroll L J. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy [J]. Mater. Sci. Eng., 2012, A556: 864
15 Taylor M, Ramirez J, Charit I, et al. Creep behavior of Alloy 709 at 700 oC [J]. Mater. Sci. Eng., 2019, A762: 138083
16 Uehira A, Mizuta S, Ukai S, et al. Irradiation creep of 11Cr-0.5 Mo-2W, V, Nb ferritic-martensitic, modified 316, and 15Cr-20Ni austenitic S.S. irradiated in FFTF to 103-206 dpa [J]. J. Nucl. Mater., 2000, 283-287: 396
17 Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
18 Proff C, Abolhassani S, Lemaignan C. Oxidation behaviour of zirconium alloys and their precipitates—A mechanistic study [J]. J. Nucl. Mater., 2013, 432: 222
19 Wang Z, Zhou B X, Wang B Y, et al. Second phase particles and their corrosion behavior of Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb alloy [J]. Acta Metall. Sin., 2016, 52: 78
doi: 10.11900/0412.1961.2015.00260
19 王 桢, 周邦新, 王波阳 等. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为 [J]. 金属学报, 2016, 52: 78
20 Chen S H, Rong L J. Oxidation behavior of intermetallic phase and its contribution to the oxidation resistance in Fe-Cr-Zr ferritic alloy [J]. Metals, 2022, 12: 827
21 Wu X Q, Rong L J, Tan J B, et al. Research advance on liquid lead-bismuth eutectic corrosion resistant Si enhanced ferritic/martensitic and austenitic stainless steels [J]. Acta Metall. Sin., 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
21 吴欣强, 戎利建, 谭季波 等. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展 [J]. 金属学报, 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
22 Chen S H, Rong L J. Oxide scale formation on ultrafine-grained ferritic-martensitic steel during pre-oxidation and its effect on the corrosion performance in stagnant liquid Pb-Bi eutectic [J]. Acta Metall. Sin., 2021, 57: 989
22 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响 [J]. 金属学报, 2021, 57: 989
doi: 10.11900/0412.1961.2020.00451
23 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I) [J]. Corros. Sci., 2008, 50: 2523
24 Charalampopoulou E, Delville R, Verwerft M, et al. Transmission electron microscopy study of complex oxide scales on DIN 1.4970 steel exposed to liquid Pb-Bi eutectic [J]. Corros. Sci., 2019, 147: 22
doi: 10.1016/j.corsci.2018.10.018
25 Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy [M]. 2nd Ed., Eden Prairie, Minnesota: Perkin-Elmer Corporation, 1992: 28
26 Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III) [J]. Corros. Sci., 2008, 50: 2549
27 Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550 oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
28 Hong J K, Park N K, Kim S J, et al. Microstructures of oxidized primary carbides on superalloy Inconel 718 [J]. Mater. Sci. Forum, 2005, 502: 249
29 Ye Z F, Wang P, Li D Z, et al. M23C6 precipitates induced inhomogeneous distribution of silicon in the oxide formed on a high-silicon ferritic/martensitic steel [J]. Scr. Mater., 2015, 97: 45
30 Li M S, Qian Y H, Xin L. Volume Ratio of an oxide to the metal [J]. Corros. Sci. Prot. Technol., 1999, 11: 284
30 李美栓, 钱余海, 辛 丽. 合金上氧化物的体积比的分析 [J]. 腐蚀科学与防护技术, 1999, 11: 284
31 Xu C H, Gao W. Pilling-Bedworth ratio for oxidation of alloys [J]. Mater. Res. Innov., 2000, 3: 231
[1] 潘霞, 张洋鹏, 董志宏, 陈胜虎, 姜海昌, 戎利建. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2024, 60(5): 639-649.
[2] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[3] 鲁艳红, 宋元元, 陈胜虎, 戎利建. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响*[J]. 金属学报, 2016, 52(3): 298-306.