Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 521-525    DOI: 10.11900/0412.1961.2024.00345
  ★名家经典★ 本期目录 | 过刊浏览 |
耐热铝合金:组织设计与合金制备
孙军(), 刘刚, 杨冲, 张鹏, 薛航
西安交通大学 金属材料强度全国重点实验室 西安 710049
Heat-Resistant Al Alloys: Microstructural Design and Preparation
SUN Jun(), LIU Gang, YANG Chong, ZHANG Peng, XUE Hang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
Jun SUN, Gang LIU, Chong YANG, Peng ZHANG, Hang XUE. Heat-Resistant Al Alloys: Microstructural Design and Preparation[J]. Acta Metall Sin, 2025, 61(4): 521-525.

全文: PDF(1435 KB)   HTML
摘要: 

作为结构轻量化的代表性材料,传统铝合金受限于200 ℃以下温度服役,300~400 ℃高温服役成为其应用的瓶颈问题。本文面向该瓶颈问题内在机理及其相关科学问题,提出了快扩散溶质原子与慢扩散溶质原子耦合的新型耐热铝合金微观组织设计策略:(1) 沉淀相界面原子偏聚;(2) 异质原子间隙位置有序化;(3) 多层级异质相界面共格耦合等热稳定化设计,在原子尺度上对微观组织进行微合金化调控。最后,展望了300~400 ℃耐热铝合金体系开发及未来潜在发展方向。

关键词 铝合金热稳定性高温力学性能组织设计微合金化    
Abstract

Aluminum (Al) alloys, a typical lightweight material, are limited to applications at temperatures below about 200 oC. The high-temperature range of 300-400 oC has been a longstanding bottleneck for traditional Al alloys. In this study, the underlying mechanisms of this service bottleneck are first discussed, and key scientific solutions aimed at overcoming the bottleneck are proposed. A new microstructure designing strategy is proposed to develop advanced heat-resistant Al alloys through phase transformation that couples rapidly diffusing solute atoms with slowly diffusing ones. This strategy leads to three design approaches for thermal stability: (1) interfacial solute segregation at the nanoprecipitate/matrix interfaces, (2) interstitial solute ordering within the coherent nanoprecipitates, and (3) multiple interfacial coherency coupling with multiscale microstructural features. By manipulating the microalloying effect at the atomic length scale, a series of 300-400 oC heat-resistant Al alloys were developed. Furthermore, the potential development directions of the heat-resistant Al alloys are also explored as possible references for future work.

Key wordsAl alloy    thermal stability    high-temperature mechanical property    microstructural design    microalloying
收稿日期: 2024-10-14     
ZTFLH:  TG146.  
基金资助:国家自然科学基金项目(U23A6013, 92360301, U2330203);高等学校学科创新引智计划项目(BP2018008)
通讯作者:

孙 军,junsun@mail.xjtu.edu.cn,主要从事金属材料形变与相变研究

Corresponding author: SUN Jun, academician of the Chinese Academy of Sciences, professor,Tel: (029)82667143, E-mail: junsun@mail.xjtu.edu.cn
作者简介: 孙 军,男,1959年生,中国科学院院士,教授,金属材料强度全国重点实验室主任。
图1  铝合金中不同溶质原子扩散速率随温度的变化[6,7]及400 ℃下扩散速率与过饱和固溶度的关系[5]
图2  Al-Cu-Sc合金中θ'-Al2Cu沉淀相截面高角环形暗场(HAADF)像及相应的Cu和Sc原子分布[10],及300 ℃下稳态蠕变速率随蠕变应力的变化及其与其他铝合金或铝基复合材料性能对比
图3  V相HAADF像及其对应的结构分析和结构模型(观察方向[010]),Sc在共格台阶(CL)处浸入并诱发Ω→V原位相变的HAADF像,及400 ℃下拉伸应力-应变曲线对比以及拉伸强度与其他铝合金对比[5]
图4  Al-Ce-Cu-Sc合金中多层级异质相组织的SEM像、TEM像和APT像,及该材料在300 ℃下稳态蠕变速率随蠕变应力的变化及其与不含Sc对应材料的对比
1 Shyam A, Bahl S. Heat-resistant aluminium alloys [J]. Nat. Mater., 2023, 22: 425
2 Deschamps A, Hutchinson C R. Precipitation kinetics in metallic alloys: Experiments and modeling [J]. Acta Mater., 2021, 220: 117338
3 Polmear I J, Couper M J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures [J]. Metall. Trans., 1988, 19A: 1027
4 Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition [J]. Acta Mater., 2016, 119: 68
5 Xue H, Yang C, De Geuser F, et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering [J]. Nat. Mater., 2023, 22: 434
6 Rummel G, Zumkley T, Eggersmann M, et al. Diffusion of implanted 3D-transition elements in aluminum: 1. Temperature-dependence [J]. Z. Metallkd., 1995, 86:122
7 Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation [J]. Mater. Sci. Eng., 2003, A363: 140
8 Calderon H A, Voorhees P W, Murray J L, et al. Ostwald ripening in concentrated alloys [J]. Acta Metall. Mater., 1994, 42: 991
9 Chen B A, Liu G, Wang R H, et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys [J]. Acta Mater., 2013, 61: 1676
10 Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
11 Yi M, Zhang P, Yang C, et al. Improving creep resistance of Al-12 wt.% Ce alloy by microalloying with Sc [J]. Scr. Mater., 2021, 198: 113838
12 Yi M, Zhang P, Deng S H, et al. Atomic-scale compositional complexity ductilizes eutectic phase towards creep-resistant Al-Ce alloys with improved fracture toughness [J]. Acta Mater., 2024, 276: 120133
[1] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[2] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[3] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[4] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[5] 王勇, 张卫文, 杨超, 王智. 钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为[J]. 金属学报, 2024, 60(2): 247-260.
[6] 耿汝伟, 王林, 魏正英, 麻宁绪. 铝合金熔滴复合电弧增材组织演化及外延生长特性[J]. 金属学报, 2024, 60(11): 1584-1594.
[7] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[8] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[12] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[13] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[14] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.