Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 572-582    DOI: 10.11900/0412.1961.2023.00086
  研究论文 本期目录 | 过刊浏览 |
Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响
蔡正清1, 尹大伟1, 杨靓1, 王文祥1, 王飞龙1,2, 温永清1,3, 马明臻1()
1 燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
2 南京钢铁股份有限公司 南京 210000
3 包头稀土研究院 包头 014010
Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys
CAI Zhengqing1, YIN Dawei1, YANG Liang1, WANG Wenxiang1, WANG Feilong1,2, WEN Yongqing1,3, MA Mingzhen1()
1 State Key Laboratory of Metastable Materials Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
2 Nanjing Iron and Steel Co. Ltd., Nanjing 210000, China
3 Baotou Rare Earth Research Institute, Baotou 014010, China
引用本文:

蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
Zhengqing CAI, Dawei YIN, Liang YANG, Wenxiang WANG, Feilong WANG, Yongqing WEN, Mingzhen MA. Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys[J]. Acta Metall Sin, 2025, 61(4): 572-582.

全文: PDF(3890 KB)   HTML
摘要: 

锆基块体非晶合金由于其临界尺寸大、耐腐蚀性能优异、强度和弹性极限高、Young's模量相对较低,在承重结构材料及生物医学材料方向有着巨大的应用潜力。本工作以Zr-Ti-Cu-Al合金体系为对象,利用XRD、DSC、SEM及电化学实验等手段研究了Ag替换Cu对Zr55Ti3Cu32 - x Al10Ag x (x = 0、1、1.5、2和2.5,原子分数,%)块体非晶合金的玻璃形成能力、晶化动力学、力学性能和耐腐蚀性能的影响。结果表明,适量Ag替换Cu改善了该合金体系的玻璃形成能力,显著增加了晶化激活能(EgEx、Ep1、Ep2),提高了热稳定性。合金的断裂强度随Ag含量的增加而提高,当Ag含量为1.5%时,压缩变形高达5.49%,相较初始体系提升了120%。在磷酸缓冲液(PBS)与模拟体液(SBF)中进行的电化学腐蚀分析表明,Ag的添加提高了Zr55Ti3Cu32 - x Al10Ag xBMG在SBF和PBS溶液中的耐生物腐蚀能力。

关键词 块体非晶合金玻璃形成能力晶化动力学力学性能耐生物腐蚀性能    
Abstract

Bulk metallic glasses (BMGs) have unique microstructures that result in excellent physical and chemical properties. In this study, the impact of replacing Cu with Ag on the glass-forming ability (GFA), crystallization kinetics, mechanical properties, and corrosion resistance of the Zr55Ti3Cu32 - x Al10Ag x (x = 0, 1, 1.5, 2, and 2.5; atomic fraction, %) BMGs in the Zr-Ti-Cu-Al alloy system was examined, aiming to develop new Ni/Be-free BMGs for biomedical applications. XRD and DSC analyses demonstrate that replacing Cu with appropriate amounts of Ag improves the GFA of the alloy system and considerably increases the crystallization activation energy (Eg, Ex, Ep1, and Ep2), thereby enhancing thermal stability. From a thermodynamic perspective, Ag has a large negative heat of mixing with other elements. Furthermore, the addition of Ag enhances the interaction among components and promotes chemical short-range ordering in liquid, which can improve the local filling efficiency and inhibit the long-range diffusion of atoms, thereby improving the GFA. At the atomic level, Ag exhibits a considerable atomic radius disparity with the primary constituents, and its inclusion can generate a proficient and localized stacking configuration, thereby achieving reduced internal energy and augmented viscosity and enhancing the GFA of Zr55Ti3Cu32 - x Al10Ag x BMG. Mechanical property tests showed that the fracture strength increased with the increase of Ag content. In addition, the compressive deformation ability of Zr55Ti3Cu32 - xAl10Ag x BMGs is improved by the addition of appropriate Ag. The compressive strain of the new Zr55Ti3Cu30.5Al10Ag1.5 reaches 5.49%, which is 120% higher compared to the initial system. The addition of Ag may create local heterogeneity in the microstructure, allowing many secondary shear bands to appear during the expansion of the primary shear band, which increases the plasticity of the BMG. Electrochemical corrosion behavior analysis showed that the addition of appropriate Ag reduced the corrosion current density and increased the self-corrosion potential of Zr55Ti3Cu32 - x Al10Ag x BMG. Moreover, Ag enhanced the biocorrosion resistance of Zr55Ti3Cu32 - x Al10Ag x BMG in simulated body fluid and phosphate-buffered saline. Therefore, the new Zr-Ti-Cu-Al-Ag BMG system has shown great application potential as a biomedical material.

Key wordsbulk metallic glass    glass forming ability    crystallization kinetics    mechanical property    biocorrosion resistance
收稿日期: 2023-03-02     
ZTFLH:  TG139+.8  
基金资助:国家自然科学基金项目(52071278, 51827801);国家重点研发计划项目(2018YFA0703603)
通讯作者: 马明臻,mz550509@ysu.edu.cn,主要从事块体非晶合金研究
Corresponding author: MA Mingzhen, professor, Tel: (022)8071730, E-mail: mz550509@ysu.edu.cn
作者简介: 蔡正清,男,1998年生,博士生
图1  铸态Zr55Ti3Cu32 - x Al10Ag x 非晶合金临界尺寸的XRD谱
图2  Zr55Ti3Cu32 - x Al10Ag x 非晶合金在20 K/min下的DSC曲线
xTgTxTmTlTrgDc
KKKKmm
0673.0730.41133.81165.40.5774
1667.2729.71130.91164.30.5733
1.5673.8727.21127.61164.20.5796
2665.1726.41124.91161.10.5735
2.5665.0726.31123.41161.00.5735
表1  Zr55Ti3Cu32 - x Al10Ag x 非晶合金的热物性参数和临界尺寸
图3  Zr55Ti3Cu32 - x Al10Ag x 非晶合金在不同加热速率下的DSC曲线
xβ / (K·min-1)Tg / KTx / KTp1 / KTp2 / K
010665.2721.9724.2854.3
20673.0730.4732.9872.4
30674.7736.6739.3886.6
40681.7740.1742.9895.5
110665.2720.7723.1868.6
20667.2729.7731.5890.1
30676.3734.6736.9900.8
40680.5738.3741.0909.9
1.510661.3718721.3879.4
20673.8727.2729.9899.9
30674.0733.3735.8911.8
40674.6735.4738.6918.2
210662.2718721.2886.1
20665.1726.4729.8904.5
30673.7732.1735.2914.3
40674.5736.5739.8923.2
2.510663.1718.2721.7888.8
20665.0727.1730.0904.9
30671.5731.8735.4915.0
40672.0735.9738.8921.8
表2  Zr55Ti3Cu32 - x Al10Ag x 非晶合金在不同加热速率下的特征温度
图4  Zr55Ti3Cu32 - x Al10Ag x 非晶合金的Kissinger图谱
图5  Zr55Ti3Cu32 - x Al10Ag x 非晶合金的室温压缩应力-应变曲线
xσy / MPaσf / MPaεmax / %εp / %E / GPa
0-14952.49-67.0
1-15333.00-61.9
1.5154116595.491.9454.2
2161717844.201.4069.6
2.5168517183.290.2469.8
表3  Zr55Ti3Cu32 - x Al10Ag x 非晶合金的力学性能
图6  Zr55Ti3Cu32 - x Al10Ag x 压缩试样断口的SEM像
图7  Zr55Ti3Cu32 - x Al10Ag x 压缩试样侧表面形貌的SEM像
图8  Zr55Ti3Cu32 - x Al10Ag x 非晶合金的在2种溶液中的动电位极化曲线
Solutionxicorr / (A·cm-2)Ecorr / mVEpit / mV
PBS05.10 × 10-7-427.9-36.2
1.51.04 × 10-7-426.7-296.7
22.12 × 10-7-582.1-212.7
2.52.15 × 10-7-463.9-275.6
SBF05.56 × 10-8-311.7-100.9
1.53.68 × 10-8-346.5-175.3
21.03 × 10-8-278.8-203.2
2.52.02 × 10-8-381.7-102.7
表4  Zr55Ti3Cu32 - x Al10Ag x 非晶合金的腐蚀参数
图9  Zr55Ti3Cu32 - x Al10Ag x 非晶合金腐蚀表面的SEM像
1 El-Eskandarany M S, Ali N, Saeed M. Glass-forming ability and soft magnetic properties of (Co75Ti25)100 - x Fe x (x; 0-20 at.%) systems fabricated by SPS of mechanically alloyed nanopowders [J]. Nanomaterials, 2020, 10: 849
2 Zhang C, Li N, Pan J, et al. Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag [J]. J. Alloys Compd., 2010, 504: S163
3 Chang C T, Shen B L, Inoue A. FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties [J]. Appl. Phys. Lett., 2006, 89: 051912
4 Schroers J. Processing of bulk metallic glass [J]. Adv. Mater., 2010, 22: 1566
5 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
6 Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
7 Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method [J]. Mater. Trans. JIM, 1996, 37: 185
8 Inoue A, Gook J S. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region [J]. Mater. Trans. JIM, 1995, 36: 1180
9 Inoue A, Shinohara Y, Gook J S. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting [J]. Mater. Trans. JIM, 1995, 36: 1427
10 Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter [J]. Mater. Trans. JIM, 2007, 38: 179
11 He Y, Schwarz R B, Archuleta J I. Bulk glass formation in the Pd-Ni-P system [J]. Appl. Phys. Lett., 1996, 69: 1861
12 Shen Y, Ma E, Xu J. A group of Cu(Zr)-based BMGs with critical diameter in the range of 12 to 18 mm [J]. J. Mater. Sci. Technol., 2008, 24: 149
13 Zhang Q S, Zhang W, Inoue A. New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm [J]. Scr. Mater., 2006, 55: 711
14 Inoue A, Ohtera K, Kita K, et al. New amorphous Mg-Ce-Ni alloys with high strength and good ductility [J]. Jpn. J. Appl. Phys., 1988, 27: L2248
15 Inoue A, Nishiyama N, Amiya K, et al. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans. JIM, 1989, 30: 965
16 Shi H Q, Zhao W B, Wei X W, et al. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications [J]. J. Alloys Compd., 2020, 815: 152636
17 Hua N B, Li R, Wang H, et al. Formation and mechanical properties of Ni-free Zr-based bulk metallic glasses [J]. J. Alloys Compd., 2011, 509(): S175
18 Wataha J C, Lockwood P E, Schedle A. Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low‐dose exposures [J]. J. Biomed. Mater. Res., 2000, 52: 360
19 Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloys Compd., 2019, 806: 668
20 Zhang W, Jia F, Zhang Q S, et al. Effects of additional Ag on the thermal stability and glass-forming ability of Cu-Zr binary glassy alloys [J]. Mater. Sci. Eng., 2007, 459A: 330
21 Hua N B, Pang S J, Li Y, et al. Ni- and Cu-free Zr-Al-Co-Ag bulk metallic glasses with superior glass-forming ability [J]. J. Mater. Res., 2011, 26: 539
22 Saini S, Srivastava A P, Neogy S. The effect of Ag addition on the crystallization kinetics and glass forming ability of Zr-(CuAg)-Al bulk metallic glass [J]. J. Alloys Compd., 2019, 772: 961
23 Hua N B, Zhang T. Glass-forming ability, crystallization kinetics, mechanical property, and corrosion behavior of Zr-Al-Ni-Ag glassy alloys [J]. J. Alloys Compd., 2014, 602: 339
24 Yang Y J, Cheng B Y, Lv J W, et al. Effect of Ag substitution for Ti on glass-forming ability, thermal stability and mechanical properties of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 2019, A746: 229
25 Wan Y Z, Raman S, He F, et al. Surface modification of medical metals by ion implantation of silver and copper [J]. Vacuum, 2007, 81: 1114
26 Lu Z P, Bei H, Liu C T. Recent progress in quantifying glass-forming ability of bulk metallic glasses [J]. Intermetallics, 2007, 15: 618
27 Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets [J]. J. Chem. Phys., 1952, 20: 411
28 Sohrabi S, Gholamipour R. Effect of Nb minor addition on the crystallization kinetics of Zr-Cu-Al-Ni metallic glass [J]. J. Non-Cryst. Solids, 2021, 560: 120731
29 Qiao J C, Pelletier J M. Isochronal and isothermal crystallization in Zr55Cu30Ni5Al10 bulk metallic glass [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 577
30 Chen Q Z, Thouas G A. Metallic implant biomaterials [J]. Mater. Sci. Eng., 2015, R87: 1
31 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
32 Conner R D, Choi-Yim H, Johnson W. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites [J]. J. Mater. Res., 1999, 14: 3292
33 Kusy M, Kühn U, Concustell A, et al. Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass [J]. Intermetallics, 2006, 14: 982
34 Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94: 125510
35 Zhang Y, Zhou M, Zhao X Y, et al. Co substituted Zr-Cu-Al-Ni metallic glasses with enhanced glass-forming ability and high plasticity [J]. J. Non-Cryst. Solids, 2017, 473: 120
36 Wang W H, Wei Q, Friedrich S. Microstructure, decomposition, and crystallization in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Phys. Rev., 1998, 57B: 8211
37 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
38 Zhang Q S, Zhang W, Louzguine-Luzgin D V, et al. High glass-forming ability and unusual deformation behavior of new Zr-Cu-Fe-Al bulk metallic glasses [J]. Mater. Sci. Forum, 2010, 654-656: 1042
39 Cui X, Zu F Q, Jiang W X, et al. Achieving superior glass forming ability of Zr-Cu-Al-Ni-Ti/Ag bulk metallic glasses by element substitution [J]. J. Non-Cryst. Solids, 2013, 375: 83
40 Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
41 Hua N B, Huang L, He W, et al. A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility [J]. J. Non-Cryst. Solids, 2013, 376: 133
42 Park E S, Lee J Y, Kim D H. Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg-Cu-Gd bulk metallic glass [J]. J. Mater. Res., 2005, 20: 2379
43 Li B, Sun W C, Qi H N, et al. Effects of Ag substitution for Fe on glass-forming ability, crystallization kinetics, and mechanical properties of Ni-free Zr-Cu-Al-Fe bulk metallic glasses [J]. J. Alloys Compd., 2020, 827: 154385
44 Sun Y, Huang Y J, Fan H B, et al. In vitro and in vivo biocompatibility of an Ag-bearing Zr-based bulk metallic glass for potential medical use [J]. J. Non-Cryst. Solids, 2015, 419: 82
45 Hua N B, Huang L, Wang J F, et al. Corrosion behavior and in vitro biocompatibility of Zr-Al-Co-Ag bulk metallic glasses: An experimental case study [J]. J. Non-Cryst. Solids, 2012, 358: 1599
46 Li W R, Xie X B, Shi Q S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli [J]. Appl. Microbiol. Biotechnol., 2010, 85: 1115
[1] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[2] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[3] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[4] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[5] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[6] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[7] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[8] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[9] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[10] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[11] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[12] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[13] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[14] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[15] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.