Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 909-916    DOI: 10.11900/0412.1961.2024.00077
  研究论文 本期目录 | 过刊浏览 |
一种新型高强奥氏体低密度钢的强塑性机理
李夫顺, 刘志鹏, 丁灿灿, 胡斌(), 罗海文()
北京科技大学 冶金与生态工程学院 北京 100083
Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel
LI Fushun, LIU Zhipeng, DING Cancan, HU Bin(), LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
Fushun LI, Zhipeng LIU, Cancan DING, Bin HU, Haiwen LUO. Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel[J]. Acta Metall Sin, 2025, 61(6): 909-916.

全文: PDF(2712 KB)   HTML
摘要: 

高强低密度钢能在保证结构安全性的前提下降低重量,减少CO2排放,因此在汽车等交通运输工业中占有重要的地位。本工作设计并制备出一种密度为6.50 g/cm³的含Cr奥氏体钢。经35%压下率冷轧+时效 (35CR-T)和75%压下率冷轧+退火+时效(75CR-AT) 2种工艺路径所得到的样品均表现出优异的综合力学性能,2者的比屈服强度和总延伸率分别达到211.5 MPa·cm3/g、15.6%和210.0 MPa·cm3/g、21.5%。其中,35CR-T样品的显微组织由具有高密度位错的奥氏体和粗大的κ-碳化物组成;75CR-AT样品的显微组织由细小的再结晶奥氏体和更多、更细小的晶内κ-碳化物组成。因此,前者位错强化贡献值更高,而后者晶界强化和析出强化增量更高,这导致2种样品屈服强度相当。75CR-AT样品中再结晶奥氏体变形时依次形成平面滑移位错、Taylor晶格、高密度位错墙和微带等位错亚结构,而35CR-T样品中奥氏体内的微带结构限制了其变形时位错增殖和位错亚结构的形成,因此后者的塑性较前者差。

关键词 奥氏体低密度钢Cr合金化κ-碳化物位错亚结构力学性能    
Abstract

High-strength low-density steels are strongly recommended in the automotive industry because they can reduce weight and CO2 emissions without affecting structural safety. In this study, a novel Cr-alloyed austenitic steel with a low density of 6.50 g/cm3 was designed. It was subjected to two types of processing routes. One includes cold rolling with a thickness reduction of 35% followed by aging at 450 oC for 1.5 h (known as 35CR-T). The other route includes cold rolling by 75%, short annealing at 925 oC for 10 s, and final aging at 450 oC for 1.5 h (known as 75CR-AT). Both resultant specimens exhibited excellent tensile properties; the specific yield strength and total elongation of the 35CR-T and 75CR-AT specimens reached 211.5 MPa·cm3/g, 15.6% and 210.0 MPa·cm3/g3, 21.5%, respectively. The microstructure of the former comprises relatively coarse austenite grains with high-density dislocations as the matrix and coarse κ-carbides, whereas that of the latter comprises fine recrystallized austenite grains and more extensive intragranular κ-carbides with a finer size. Consequently, greater dislocation strengthening contributes to the yield strength (YS) of the former, whereas more significant grain refinement and precipitation strengthening contribute to the YS of the latter. Therefore, both specimens have the same YS after considering all strengthening contributors. Moreover, the recrystallized austenite grains in 75CR-AT allow the sequential evolution of the dislocation substructure from planar-slip dislocations, Taylor lattice, and high-density dislocation wall to the microband during tensile deformation. By contrast, the dislocation microbands formed in the austenite grains of 35CR-T specimen suppress the dislocation multiplication and sequential evolution of dislocation substructures, resulting in poorer ductility compared with that of 75CR-AT specimen.

Key wordsaustenitic low-density steel    Cr-alloying    κ-carbide    dislocation substructure    mechanical property
收稿日期: 2024-03-12     
ZTFLH:  TG135.7  
基金资助:云南省重点研发计划项目(202403AA080013);国家自然科学基金项目(52233018);国家自然科学基金项目(51831002);北京市自然科学基金项目(2242048)
通讯作者: 胡 斌,hubin@ustb.edu.cn,主要从事钢铁材料组织性能调控方向研究;
罗海文,luohaiwen@ustb.edu.cn,主要从事先进钢铁材料的全流程制备与研究
Corresponding author: HU Bin, associate professor, Tel: (010)62332911, E-mail: hubin@ustb.edu.cn;
LUO Haiwen, professor, Tel: (010)62332911, E-mail: luohaiwen@ustb.edu.cn
作者简介: 李夫顺,男,1997年生,硕士
图1  不同工艺处理后钢的拉伸力学性能及与文献[5,7~19]结果的对比
SpecimenProcessing route

YS

MPa

SYS

MPa·cm3·g-1

UTS

MPa

SUTS

MPa·cm3·g-1

TE

%

35CRCR by 35%1260193.91405216.220.4
35CR-TCR by 35% + aging at 450 oC for 1.5 h1375211.51425219.215.6
75CRCR by 75%1605246.91855285.45.4
75CR-TCR by 75% + aging at 450 oC for 1.5 h2085320.82210340.02.3
75CR-ATCR by 75% + annealing at 925 oC for 10 s +1365210.01425219.221.5
aging at 450 oC for 1.5 h
表1  实验用钢经不同工艺处理后的拉伸力学性能
图2  EBSD相分布图与晶粒参考取向差图
Specimen

Austenite area

fraction / %

Ferrite area

fraction / %

Austenite grain size

μm

Recrystallization austenite fraction

%

35CR98.91.16.5110.6
35CR-T98.21.86.0213.3
75CR96.23.81.481.8
75CR-T96.83.21.2012.5
75CR-AT92.67.41.6598.6
表2  根据EBSD结果得出的各样品组织成分统计结果
图3  35CR-T和75CR-AT样品显微组织的TEM明场像和暗场像
图4  35CR-T和75CR-AT样品EBSD的核平均取向差(KAM)图,以及样品中奥氏体和κ-碳化物(220)晶面的对应XRD衍射峰与拟合曲线
图5  35CR-T和75CR-AT样品中3种强化机制对屈服强度增量贡献的对比
图6  75CR-AT和35CR-T样品拉伸变形至不同真应变时显微组织的TEM明场像
1 Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels [J]. J. Alloys Compd., 2019, 775: 1136
2 Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J]. Mater. Rep., 2019, 33: 2572
2 刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33: 2572
3 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
4 Huang Z Y, Hou A L, Jiang Y S, et al. Rietveld refinement, microstructure, mechanical properties and oxidation characteristics of Fe-28Mn-xAl-1C (x = 10 and 12 wt. %) low-density steels [J]. J. Iron Steel Res. Int., 2017, 24: 1190
5 Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
6 Chen X P, Xu Y P, Ren P, et al. Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel [J]. Mater. Sci. Eng., 2017, A703: 167
7 Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
8 Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng., 2009, A508: 234
9 Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77: 627
10 Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels [J]. JOM, 2014, 66: 1845
11 Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel [J]. Mater. Des., 2015, 76: 32
12 Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
13 Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
14 Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
15 Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
16 Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J]. Scr. Mater., 2013, 68: 343
17 Lee J, Park S, Kim H, et al. Simulation of κ-carbide precipitation kinetics in aged low-density Fe-Mn-Al-C steels and its effects on strengthening [J]. Met. Mater. Int., 2018, 24: 702
18 Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content [J]. Mater. Sci. Eng., 2015, A639: 187
19 Jiang Z H, Jin J J, Wang X Z, et al. Microstructure and properties of a low-density steel with high strength of 1350 MPa [J]. J. Aeronaut. Mater., 2018, 38(5): 67
19 江志华, 金建军, 王晓震 等. 一种1350 MPa级低密度高强度钢的组织性能 [J]. 航空材料学报, 2018, 38(5): 67
doi: 10.11868/j.issn.1005-5053.2018.000032
20 Seward G G E, Celotto S, Prior D J, et al. In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium [J]. Acta Mater., 2004, 52: 821
21 Humphreys F J. Review Grain and subgrain characterisation by electron backscatter diffraction [J]. J. Mater. Sci., 2001, 36: 3833
22 Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
23 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
24 Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
25 Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
26 Zhao Y L, Li Y R, Yeli G M, et al. Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates [J]. Acta Mater., 2022, 223: 117480
27 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
28 Wang Z W, Lu W J, Zhao H, et al. Formation mechanism of κ- carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels [J]. Acta Mater., 2020, 198: 258
29 Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
30 Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel [J]. Metall. Mater. Trans., 2009, 40A: 1520
[1] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[2] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[3] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[4] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[5] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[6] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[7] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[8] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[9] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[10] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[11] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[12] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[13] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[14] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[15] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.