|
|
一种新型高强奥氏体低密度钢的强塑性机理 |
李夫顺, 刘志鹏, 丁灿灿, 胡斌( ), 罗海文( ) |
北京科技大学 冶金与生态工程学院 北京 100083 |
|
Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel |
LI Fushun, LIU Zhipeng, DING Cancan, HU Bin( ), LUO Haiwen( ) |
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
Fushun LI,
Zhipeng LIU,
Cancan DING,
Bin HU,
Haiwen LUO.
Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel[J]. Acta Metall Sin, 2025, 61(6): 909-916.
1 |
Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels [J]. J. Alloys Compd., 2019, 775: 1136
|
2 |
Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J]. Mater. Rep., 2019, 33: 2572
|
2 |
刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33: 2572
|
3 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
|
4 |
Huang Z Y, Hou A L, Jiang Y S, et al. Rietveld refinement, microstructure, mechanical properties and oxidation characteristics of Fe-28Mn-xAl-1C (x = 10 and 12 wt. %) low-density steels [J]. J. Iron Steel Res. Int., 2017, 24: 1190
|
5 |
Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
|
6 |
Chen X P, Xu Y P, Ren P, et al. Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel [J]. Mater. Sci. Eng., 2017, A703: 167
|
7 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
|
8 |
Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng., 2009, A508: 234
|
9 |
Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77: 627
|
10 |
Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels [J]. JOM, 2014, 66: 1845
|
11 |
Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel [J]. Mater. Des., 2015, 76: 32
|
12 |
Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
|
13 |
Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
|
14 |
Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
|
15 |
Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
|
16 |
Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J]. Scr. Mater., 2013, 68: 343
|
17 |
Lee J, Park S, Kim H, et al. Simulation of κ-carbide precipitation kinetics in aged low-density Fe-Mn-Al-C steels and its effects on strengthening [J]. Met. Mater. Int., 2018, 24: 702
|
18 |
Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content [J]. Mater. Sci. Eng., 2015, A639: 187
|
19 |
Jiang Z H, Jin J J, Wang X Z, et al. Microstructure and properties of a low-density steel with high strength of 1350 MPa [J]. J. Aeronaut. Mater., 2018, 38(5): 67
|
19 |
江志华, 金建军, 王晓震 等. 一种1350 MPa级低密度高强度钢的组织性能 [J]. 航空材料学报, 2018, 38(5): 67
doi: 10.11868/j.issn.1005-5053.2018.000032
|
20 |
Seward G G E, Celotto S, Prior D J, et al. In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium [J]. Acta Mater., 2004, 52: 821
|
21 |
Humphreys F J. Review Grain and subgrain characterisation by electron backscatter diffraction [J]. J. Mater. Sci., 2001, 36: 3833
|
22 |
Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
|
23 |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
24 |
Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
|
25 |
Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
|
26 |
Zhao Y L, Li Y R, Yeli G M, et al. Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates [J]. Acta Mater., 2022, 223: 117480
|
27 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
28 |
Wang Z W, Lu W J, Zhao H, et al. Formation mechanism of κ- carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels [J]. Acta Mater., 2020, 198: 258
|
29 |
Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
|
30 |
Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel [J]. Metall. Mater. Trans., 2009, 40A: 1520
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|