Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 881-889    DOI: 10.11900/0412.1961.2022.00634
  研究论文 本期目录 | 过刊浏览 |
预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响
汪丽佳1, 胡励1(), 苗天虎1, 周涛1, 何曲波2, 刘相果3
1 重庆理工大学 材料科学与工程学院 重庆 400054
2 重庆材料研究院有限公司 重庆 400707
3 重庆中镭科技有限公司 重庆 400800
Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature
WANG Lijia1, HU Li1(), MIAO Tianhu1, ZHOU Tao1, HE Qubo2, LIU Xiangguo3
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 Chongqing Material Research Institute Co. Ltd., Chongqing 400707, China
3 Chongqing Zhonglei Tech. Co. Ltd., Chongqing 400800, China
引用本文:

汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
Lijia WANG, Li HU, Tianhu MIAO, Tao ZHOU, Qubo HE, Xiangguo LIU. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. Acta Metall Sin, 2024, 60(7): 881-889.

全文: PDF(3763 KB)   HTML
摘要: 

为揭示双峰分离非基面织构AZ31镁合金板材预变形后的室温变形行为及微观组织演化规律,对该板材施加压下量5%的深冷轧制预变形,结合室温单轴拉伸和微观组织表征实验,研究预变形对制备板材力学行为及微观组织演变的影响。结果表明,沿轧制方向(RD)试样的初始屈服强度和断裂延伸率较未预变形试样分别提升212.5%和降低56.9%。沿板材横向(TD)试样的初始屈服强度和断裂延伸率较未预变形试样分别降低6.7%和提升37.9%。不同方向试样初始屈服强度的差异主要是由于TD试样中TD织构组分所对应的晶粒比RD试样中双峰分离非基面织构组分所对应的晶粒更容易激活基面<a>滑移。断裂延伸率的差异主要是由于在RD试样中,{101¯2}拉伸孪晶的扩张受到抑制,会较早出现{101¯1}压缩孪晶,而在TD试样中,{101¯2}拉伸孪晶可以有效扩张,且后期出现一定数量的{101¯1}-{101¯2}双孪晶来承载/协调塑性应变。

关键词 AZ31镁合金双峰分离非基面织构预变形微观组织演化塑性变形机制    
Abstract

An AZ31 Mg alloy sheet with bimodal non-basal texture exhibits good formability at room temperature. However, its initial yield stress (YS) is relatively low during uniaxial tension along the rolling direction (RD) at room temperature, which limits its potential for further application. Recent studies have demonstrated that introducing {101¯2} extension twin (ET) through predeformation can improve the mechanical properties of Mg alloy sheets with a basal texture at room temperature. However, the predeformation process for Mg alloy sheets with non-basal texture has rarely been investigated, along with their subsequent plastic deformation behavior at room temperature. Therefore, to investigate the room temperature deformation behavior and microstructure evolution of an AZ31 Mg alloy sheet with bimodal non-basal texture after predeformation, this work exerted a 5% thickness reduction on the sheet via cryogenic rolling. Then uniaxial tension experiments at room temperature and microstructure characterization experiments were conducted to illuminate the effect of predeformation on the mechanical behavior and microstructure evolution of the fabricated sheet. The findings indicate that when loaded along the RD, the YS and fracture elongation (FE) of the predeformed sample are 212.5% larger and 56.9% smaller than those of the non-predeformed sample. When loaded along the transverse direction (TD), the YS and FE of the predeformed sample are 6.7% smaller and 37.9% larger than those of the non-predeformed sample. The difference in YS in the predeformed samples is primarily attributed to easier activation of basal <a> slip in grains with a TD texture component in the TD sample than in grains with a bimodal non-basal texture component in the RD sample. The difference in FE in the predeformed samples is due to the inhibition of the expansion of preexsiting {101¯2} ETs in the RD sample, resulting in the early occurrence of {101¯1} compression twins (CTs). In comparison, the expansion of preexsiting {101¯2} ETs can be effectively performed in the TD sample. Additionally, some {101¯1}-{101¯2} double twins (DTs) would be activated at the later stage of tensile deformation to sustain and/or accommodate local plastic strain.

Key wordsAZ31 Mg alloy    bimodal non-basal texture    pre-deformation    microstructure evolution    plastic deformation mechanism
收稿日期: 2022-12-18     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金项目(52274374);中国博士后科学基金项目(2021M703592);重庆市博士后研究(一等)资助项目(2021XM1022);重庆市教育委员会科学技术研究计划青年项目(KJQN202101141);重庆理工大学校级研究生创新项目(gzlcx20222004)
通讯作者: 胡 励,huli@cqut.edu.cn,主要从事镁合金板材特种塑性加工及变形行为研究
Corresponding author: HU Li, associate professor, Tel: 17358428920, E-mail: huli@cqut.edu.cn
作者简介: 汪丽佳,女,1998年生,硕士生
图1  实验流程及拉伸试样取样方式和相应尺寸示意图
图2  深冷轧制5%后AZ31镁合金板材的初始微观组织和织构
图3  RD和TD试样的真应力-真应变曲线和加工硬化曲线
图4  RD试样单轴拉伸3%和6%条件下的EBSD分析
图5  TD试样单轴拉伸6%和12%条件下的EBSD分析
图6  预变形板材沿RD和TD单轴拉伸条件下相应织构组分晶粒的Schmid因子(SF)分布
图7  RD和TD试样室温单轴拉伸过程中的变形机制示意图
1 Wu J L, Jin L, Dong J, et al. The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42: 175
doi: 10.1016/j.jmst.2019.10.010
2 Rajan S T, Das M, Arockiarajan A. In vitro biocompatibility and degradation assessment of tantalum oxide coated Mg alloy as biodegradable implants [J]. J. Alloys Compd., 2022, 905: 164272
3 Luo K, Zhang L, Wu G H, et al. Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys [J]. J. Magnes. Alloy., 2019, 7: 345
4 Srinivasan A, Blawert C, Huang Y, et al. Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution [J]. J. Magnes. Alloy., 2014, 2: 245
5 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
6 Wang C P, Xin R L, Li D R, et al. Enhancing the age-hardening response of rolled AZ80 alloy by pre-twinning deformation [J]. Mater. Sci. Eng., 2017, A680: 152
7 Kim S J, Lee C, Koo J, et al. Improving the room-temperature formability of a magnesium alloy sheet by texture control [J]. Mater. Sci. Eng., 2018, A724: 156
8 Xin Y C, Wang M Y, Zeng Z, et al. Strengthening and toughening of magnesium alloy by {10 1 ¯ 2} extension twins [J]. Scr. Mater., 2012, 66: 25
9 He W J, Zeng Q H, Yu H H, et al. Improving the room temperature stretch formability of a Mg alloy thin sheet by pre-twinning [J]. Mater. Sci. Eng., 2016, A655: 1
10 Li Y Y, Yang B W, Han T Z, et al. Effect of pre-deformation on microstructure characteristics, texture evolution and deformation mechanism of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2022, A845: 143234
11 Lee J N, Kim Y J, Kim S-H, et al. Texture tailoring and bendability improvement of rolled AZ31 alloy using {10 1 ¯ 2} twinning: The effect of precompression levels [J]. J. Magnes. Alloy., 2019, 7: 648
12 Tu J, Zhou T, Liu L, et al. Effect of rolling speeds on texture modification and mechanical properties of the AZ31 sheet by a combination of equal channel angular rolling and continuous bending at high temperature [J]. J. Alloys Compd., 2018, 768: 598
13 Zhang S Z, Hu L, Ruan Y T, et al. Influence of bimodal non-basal texture on microstructure characteristics, texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature [J]. J. Magnes. Alloy., 2023, 11: 2600
14 Hu L, Li M A, Chen Q, et al. Dependence of microstructure evolution and mechanical properties on loading direction for AZ31 magnesium alloy sheet with non-basal texture during in-plane uniaxial tension [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 223
15 Yan C K, Feng A H, Qu S J, et al. Dynamic recrystallization of titanium: Effect of pre-activated twinning at cryogenic temperature [J]. Acta Mater., 2018, 154: 311
16 Wei D X, Koizumi Y, Nagasako M, et al. Refinement of lamellar structures in Ti-Al alloy [J]. Acta Mater., 2017, 125: 81
17 Chen Y, Hu L, Shi L X, et al. Effect of texture types on microstructure evolution and mechanical properties of AZ31 magnesium alloy undergoing uniaxial tension deformation at room temperature [J]. Mater. Sci. Eng., 2020, A769: 138497
18 Chino Y, Sassa K, Mabuchi M. Enhancement of tensile ductility of magnesium alloy produced by torsion extrusion [J]. Scr. Mater., 2008, 59: 399
19 Agnew S R, Horton J A, Lillo T M, et al. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing [J]. Scr. Mater., 2004, 50: 377
20 Sheng K, Lu L W, Xiang Y, et al. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion [J]. J. Magnes. Alloy., 2019, 7: 717
doi: 10.1016/j.jma.2019.09.006
21 Wang T, Wang Y L, Bian L P, et al. Microstructural evolution and mechanical behavior of Mg/Al laminated composite sheet by novel corrugated rolling and flat rolling [J]. Mater. Sci. Eng., 2019, A765: 138318
22 Zhang K, Zheng J H, Hopper C, et al. Enhanced plasticity at cryogenic temperature in a magnesium alloy [J]. Mater. Sci. Eng., 2021, A811: 141001
23 Wang Y, Choo H. Influence of texture on Hall-Petch relationships in an Mg alloy [J]. Acta Mater., 2014, 81: 83
24 Wang X J, Xu D K, Wu R Z, et al. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34: 245
doi: 10.1016/j.jmst.2017.07.019
25 Song B, Xin R L, Guo N, et al. Influence of basal slip activity in twin lamellae on mechanical behavior of Mg alloys [J]. Mater. Lett., 2016, 176: 147
26 Yoshinag H, Horiuchi R. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis [J]. Trans. Jpn Inst. Met., 1963, 4: 1
27 Wonsiewicz B C, Backofen W A. Plasticity of magnesium crystals [J]. Trans. AIME, 1967, 239: 1422
28 Li B, Ma Q, Mcclelland Z, et al. Twin-like domains and fracture in deformed magnesium [J]. Scr. Mater., 2013, 69: 493
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[3] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[4] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[5] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[6] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[7] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[8] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[9] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[10] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[11] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[12] 崔莉, 郭明星, 彭祥阳, 张艳, 张济山, 庄林忠. 预变形对汽车用Al-Mg-Si-Cu合金析出行为的影响[J]. 金属学报, 2015, 51(3): 289-297.
[13] 汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.
[14] 黄洪涛,Godfrey Andrew,刘伟,付宝勤,刘庆. 多向压缩中AZ31镁合金变形行为的EBSD跟踪研究[J]. 金属学报, 2013, 49(8): 932-938.
[15] 娄超,张喜燕,汪润红,段高林,刘庆. 退孪生行为以及{1012},孪晶片层结构对镁合金力学性能的影响[J]. 金属学报, 2013, 49(3): 291-296.