Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 890-900    DOI: 10.11900/0412.1961.2022.00351
  研究论文 本期目录 | 过刊浏览 |
Ga添加对304L不锈钢力学性能和抗菌性能的影响
孟玉佳1,2, 席通2, 杨春光2(), 赵金龙2, 张新蕊2, 于英杰2, 杨柯2
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel
MENG Yujia1,2, XI Tong2, YANG Chunguang2(), ZHAO Jinlong2, ZHANG Xinrui2, YU Yingjie2, YANG Ke2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
Yujia MENG, Tong XI, Chunguang YANG, Jinlong ZHAO, Xinrui ZHANG, Yingjie YU, Ke YANG. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. Acta Metall Sin, 2024, 60(7): 890-900.

全文: PDF(2800 KB)   HTML
摘要: 

Ga元素具有优异的抗菌能力,多形成镓配合物作为药物使用,但Ga很少在镓合金中展现其抗菌效果。为挖掘含Ga合金的抗菌能力,本工作利用金相观察、拉伸实验以及抗菌实验等方法探究Ga添加对304L奥氏体不锈钢的力学性能和抗菌性能的影响,并初步探讨了304L-Ga不锈钢的抗菌机理。结果表明,经过固溶处理后,Ga添加使不锈钢的屈服强度和伸长率提高,抗拉强度和硬度降低,同时因其固溶作用使不锈钢晶格常数增大。304L-Ga不锈钢具有优异的抗菌性,钝化膜表面释放的Ga3+引起细菌中活性氧(ROS)的高表达,导致氧化应激和杀菌作用。接触杀菌为304L-Ga不锈钢的杀菌机制之一,细菌与不锈钢充分接触,使细菌体内的质子(H+)与不锈钢表面所释放电子发生耗尽反应,促进不锈钢表面Ga的溶解。同时,在质子消耗反应中产生额外的ROS,进一步增强了材料的抗菌效果。

关键词 含Ga不锈钢微观组织力学性能接触抗菌    
Abstract

As a new antibacterial metal element, Ga is widely used in the medical field and always added to compounds in ionic form to form Ga complexes for medicinal use. However, related research on the mechanical properties, antibacterial properties, and antibacterial mechanism of Ga-bearing alloys is still very limited. In this work, the effect of Ga addition on the mechanical properties of 304L austenitic stainless steel (304L SS) after solution treatment was investigated via metallographic observations and tensile strength and hardness tests. Moreover, the antibacterial properties of Ga-bearing 304L stainless steel (304L-Ga SS) were tested using plate counting and the activity state of bacteria on the surface of the material was detected using SEM. Based on the known Ga ion sterilization principle, the antibacterial mechanism of 304L-Ga SS was preliminarily discussed using the reactive oxygen species (ROS) fluorescence reaction and ion dissolution results of the material in different solution tests. Results showed that the structure of 304L-Ga SS is still austenitic like that of 304L SS. The Ga addition increases the yield strength and elongation of the material but decreases its tensile strength and hardness. The change in strength and elongation is the result of the synergistic effect of the increase in stacking fault energy and the solid solution strengthening. The Ga addition also slightly increases the lattice constant of stainless steel due to the replacement solid solution effect. In the passive film of 304L-Ga SS, Ga exists in alloy form. Because of their similarity to Fe ions, Ga ions dissolved from Ga in the passive film are inhaled into bacteria cells and cause high expression of ROS in the bacteria, causing oxidative stress, and bactericidal effect. Contact sterilization is one of the main bactericidal mechanisms of 304L-Ga SS. Adequate contact between the bacteria and stainless steel improves the dissolution of Ga due to the proton (H+) depletion reaction in the bacteria. At the same time, the production of additional ROS during the proton consumption reaction further enhances the antibacterial effect.

Key wordsGa-bearing stainless steel    microstructure    mechanical property    contact antibacterial
收稿日期: 2022-07-20     
ZTFLH:  TG142.71  
基金资助:中国国家自然科学基金会(52171242);佛山市中医院“登峰计划”项目(202000206);中国科学院青年创新促进会(2018221)
通讯作者: 杨春光,cgyang@imr.ac.cn,主要从事抗菌金属材料与应用研究
Corresponding author: YANG Chunguang, professor, Tel: (024)23971899, E-mail: cgyang@imr.ac.cn
作者简介: 孟玉佳,女,1996年生,硕士生
SteelCPSSiMnNiCrGaFe
304L SS0.010.010.020.480.407.8917.21-Bal.
304L-Ga SS0.020.020.020.700.968.0317.951.57Bal.
表1  304L及304L-Ga不锈钢试样的化学成分 (mass fraction / %)
图1  拉伸试样的尺寸示意图
图2  304L和304L-Ga不锈钢显微组织的SEM像以及Ga在304L-Ga不锈钢中的EDS分布
图3  304L和304L-Ga不锈钢的XRD谱和高角度峰衍射谱
图4  304L和304L-Ga不锈钢的工程应变-应力曲线和力学性能
SteelRmMPaRelMPaA%Hardness HV
304L SS670197 ± 4.258.6 ± 1.3158.45 ± 6.29
304L-Ga SS548.3 ± 17.6210 ± 8.775.8 ± 3.3153.14 ± 4.20
表2  304L和304L-Ga不锈钢力学相关参数
图5  E. coli和S. mutans与304L和304L-Ga不锈钢共培养后生长的菌落情况及304L-Ga不锈钢的抗菌率
图6  E. coli和S. mutans在304L和304L-Ga不锈钢的菌落形态
图7  E. coli和S. mutans在304L和304L-Ga不锈钢共培养24 h后的2',7'-二氯荧光素(DCF)荧光强度和丙二酫(MDA)生成含量
图8  304L-Ga不锈钢在37℃与不同溶液共培养24 h后析出的Ga3+浓度
图9  304L-Ga不锈钢在模拟唾液中浸泡前后表面Ga的化学状态
图10  304L-Ga不锈钢的抗菌机理示意图
1 Oh K T, Choo S U, Kim K M, et al. A stainless steel bracket for orthodontic application [J]. Eur. J. Orthod., 2005, 27: 237
2 Winters G L, Nutt M J. Stainless Steels for Medical and Surgical Applications [M]. West Conshohocken: ASTM International, 2003: 13
3 Bombač D, Brojan M, Fajfar P, et al. Review of materials in medical applications [J]. RMZ-Mater. Geoenviron., 2007, 54: 471
4 Simionescu N, Benea L, Dumitrascu V M. The synergistic effect of proteins and reactive oxygen species on electrochemical behaviour of 316L stainless steel for biomedical applications [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 374: 012058
5 Chen Q Z, Thouas G A. Metallic implant biomaterials [J]. Mater. Sci. Eng., 2015, R87: 1
6 Wen M, Li W, Cao X M. Research on the mechanical properties for medical stainless steel [J]. Adv. Mater. Res., 2012, 383-390: 3976
7 Padilha A F, Plaut R L, Rios P R. Annealing of cold-worked austenitic stainless steels [J]. ISIJ Int., 2003, 43: 135
8 McGuire M F. Stainless Steels for Design Engineers [M]. New York: ASM International, 2008: 69
9 Singh N, Nanda T, Kumar B R, et al. In situ investigations of microstructural changes during tensile deformation of AISI 304L stainless steels [J]. Arch. Civ. Mech. Eng., 2019, 19: 672
10 Zhang E L, Zhao X T, Hu J L, et al. Antibacterial metals and alloys for potential biomedical implants [J]. Bioact. Mater., 2021, 6: 2569
doi: 10.1016/j.bioactmat.2021.01.030 pmid: 33615045
11 Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms [J]. Annu. Rev. Microbiol., 1995, 49: 711
pmid: 8561477
12 Sutherland I W. The biofilm matrix—An immobilized but dynamic microbial environment [J]. Trends Microbiol., 2001, 9: 222
pmid: 11336839
13 Hall-Stoodley L, Costerton J W, Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases [J]. Nat. Rev. Microbiol., 2004, 2: 95
doi: 10.1038/nrmicro821 pmid: 15040259
14 An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces [J]. J. Biomed. Mater. Res., 1998, 43: 338
15 Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications [J]. Nanomedicine, 2011, 7: 22
doi: 10.1016/j.nano.2010.10.005 pmid: 21050895
16 Ye L F, Chen H B, Lin Z L, et al. Research progress in antibacterial stainless steel [J]. Hot Work. Technol., 2014, 43(20): 10
16 叶丽芳, 陈惠波, 林照亮 等. 不锈钢抗菌技术研究进展 [J]. 热加工工艺, 2014, 43(20): 10
17 Xu M Y, Wang C, Li Y G. Research progress of antibacterial stainless steel [J]. Foundry Technol., 2016, 37(6): 1085
17 徐鸣悦, 王 丛, 李运刚. 抗菌不锈钢的研究进展 [J]. 铸造技术, 2016, 37(6): 1085
18 Kircheva N, Dudev T. Competition between abiogenic and biogenic metal cations in biological systems: Mechanisms of gallium's anticancer and antibacterial effect [J]. J. Inorg. Biochem., 2021, 214: 111309
19 Chitambar C R. Gallium complexes as anticancer drugs [A]. Metallo-Drugs: Development and Action of Anticancer Agents [M]. Berlin: De Gruyter, 2018: 281
20 Wazzan N, Soliman K A, Halim W S A. Theoretical study of gallium nitride nanocage as a carrier for 5-fluorouracil anticancer drug [J]. J. Mol. Model., 2019, 25: 265
doi: 10.1007/s00894-019-4147-8 pmid: 31444705
21 Yin H Y, Gao J J, Chen X M, et al. A gallium(III) complex that engages protein disulfide isomerase A3 (PDIA3) as an anticancer target [J]. Angew. Chem. Int. Ed., 2020, 59: 20147
22 Halevas E, Mavroidi B, Antonoglou O, et al. Structurally characterized gallium-chrysin complexes with anticancer potential [J]. Dalton Trans., 2020, 49: 2734
doi: 10.1039/c9dt04540f pmid: 32064490
23 Auger C, Lemire J, Appanna V, et al. Gallium in bacteria, metabolic and medical implications [A]. Encyclopedia of Metalloproteins [M]. New York: Springer, 2013: 800
24 Minandri F, Bonchi C, Frangipani E, et al. Promises and failures of gallium as an antibacterial agent [J]. Future Microbiol., 2014, 9: 379
doi: 10.2217/fmb.14.3 pmid: 24762310
25 Verron E, Bouler J M, Scimeca J C. Gallium as a potential candidate for treatment of osteoporosis [J]. Drug Discov. Today, 2012, 17: 1127
doi: 10.1016/j.drudis.2012.06.007 pmid: 22710367
26 Kaneko Y, Thoendel M, Olakanmi O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity [J]. J. Clin. Invest., 2007, 117: 877
27 Olakanmi O, Britigan B E, Schlesinger L S. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages [J]. Infect. Immun., 2000, 68: 5619
doi: 10.1128/IAI.68.10.5619-5627.2000 pmid: 10992462
28 Harrington J R, Martens R J, Cohen N D, et al. Antimicrobial activity of gallium against virulent Rhodococcus equiin vitro and in vivo [J]. J. Vet. Pharmacol. Ther., 2006, 29: 121
pmid: 16515666
29 Coleman M, Kuskie K, Liu M, et al. In vitro antimicrobial activity of gallium maltolate against virulent Rhodococcus equi [J]. Vet. Microbiol., 2010, 146: 175
30 Baldoni D, Steinhuber A, Zimmerli W, et al. In vitro activity of gallium maltolate against staphylococci in logarithmic, stationary, and biofilm growth phases: Comparison of conventional and calorimetric susceptibility testing methods [J]. Antimicrob. Agents. Chemother., 2010, 54: 157
doi: 10.1128/AAC.00700-09 pmid: 19805560
31 Chitambar C R. Gallium and its competing roles with iron in biological systems [J]. Biochim. Biophys. Acta., 2016, 1863: 2044
doi: 10.1016/j.bbamcr.2016.04.027 pmid: 27150508
32 Wu H X, Li R, Ge X. In vitro clearance effects of gallium nitrate on biofilms of clinically isolated Staphylococcus aureus [J]. Chin. J. Infect. Control, 2015, 14: 223
32 吴浩昕, 李 蓉, 葛 新. 硝酸镓对临床分离金黄色葡萄球菌生物膜的体外清除作用 [J]. 中国感染控制杂志, 2015, 14: 223
33 Rimondini L, Valle C D, Cochis A, et al. The biofilm formation onto implants and prosthetic materials may be contrasted using gallium (3+) [J]. Key Eng. Mater., 2013, 587: 315
34 Bernstein L R, Zhang L K. Gallium maltolate has in vitro antiviral activity against SARS-CoV-2 and is a potential treatment for COVID-19 [J]. Antivir. Chem. Chemother., 2020, 28: 2040206620983780
35 Xu G M, Zhang C X, Ning L, et al. Evaluation on the cytotoxicity of gallium alloy by MTT-assay [J]. Chin. J. Stomatol., 2001, 36: 189
pmid: 11812339
35 徐钢梅, 张彩霞, 宁 丽 等. MTT法评价镓合金的细胞毒性[J]. 中华口腔医学杂志, 2001, 36: 189
36 Goss C H, Kaneko Y, Khuu L, et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections [J]. Sci. Transl. Med., 2018, 10: eaat7520
37 Li L, Chang H, Yong N, et al. Superior antibacterial activity of gallium based liquid metals due to Ga3+ induced intracellular ROS generation [J]. J. Mater. Chem., 2021, 9B: 85
38 Cochis A, Azzimonti B, Chiesa R, et al. Metallurgical gallium additions to titanium alloys demonstrate a strong time-increasing antibacterial activity without any cellular toxicity [J]. ACS Biomater. Sci. Eng., 2019, 5: 2815
39 Choi S R, Britigan B E, Narayanasamy P. Iron/heme metabolism-targeted gallium(III) nanoparticles are active against extracellular and intracellular Pseudomonas aeruginosa and Acinetobacter baumannii [J]. Antimicrob. Agents. Chemother., 2019, 63: e02643-18
40 Piatek M, Griffith D M, Kavanagh K. Quantitative proteomic reveals gallium maltolate induces an iron-limited stress response and reduced quorum-sensing in Pseudomonas aeruginosa [J]. J. Biol. Inorg. Chem., 2020, 25: 1153
41 Gao C D, Zeng Z H, Peng S P, et al. Magnetostrictive alloys: Promising materials for biomedical applications [J]. Bioact. Mater., 2022, 8: 177
doi: 10.1016/j.bioactmat.2021.06.025 pmid: 34541395
42 Eshed M, Lellouche J, Gedanken A, et al. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO [J]. Adv. Funct. Mater., 2014, 24: 1382
43 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 111
43 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 111
44 Cai T, Li K Q, Zhang Z J, et al. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53: 61
doi: 10.1016/j.jmst.2020.04.027
45 Hacht B. Gallium(III) ion hydrolysis under physiological conditions [J]. Bull. Korean Chem. Soc., 2008, 29: 372
46 Orlov Y F, Maslov E I, Belkina E I. Solubilities of metal hydroxides [J]. Russ. J. Inorg. Chem., 2013, 58: 1306
47 Moeller T, King G L. The some physicochemical studies on Gallium(III) salt solutions [J]. J. Phys. Chem., 1950, 54: 999
48 Hijazi S, Visca P, Frangipani E. Gallium-protoporphyrin IX inhibits Pseudomonas aeruginosa growth by targeting cytochromes [J]. Front. Cell. Infect. Microbiol., 2017, 7: 12
49 Braud A, Hoegy F, Jezequel K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway [J]. Environ. Microbiol., 2009, 11: 1079
50 Todorov L, Kostova I, Lanthanum Traykova M. gallium and their impact on oxidative stress [J]. Curr. Med. Chem., 2019, 26: 4280
doi: 10.2174/0929867326666190104165311 pmid: 31438825
51 Cao H L, Liu X Y, Meng F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects [J]. Biomaterials, 2011, 32: 693
doi: 10.1016/j.biomaterials.2010.09.066 pmid: 20970183
52 Wang G M, Jin W H, Qasim A M, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species [J]. Biomaterials, 2017, 124: 25
doi: S0142-9612(17)30042-X pmid: 28182874
[1] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[2] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[3] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[4] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[5] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[6] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[7] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[8] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[9] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[10] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[11] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[12] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[13] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[14] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[15] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.