|
|
Ga添加对304L不锈钢力学性能和抗菌性能的影响 |
孟玉佳1,2, 席通2, 杨春光2( ), 赵金龙2, 张新蕊2, 于英杰2, 杨柯2 |
1 中国科学技术大学 材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel |
MENG Yujia1,2, XI Tong2, YANG Chunguang2( ), ZHAO Jinlong2, ZHANG Xinrui2, YU Yingjie2, YANG Ke2 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
Yujia MENG,
Tong XI,
Chunguang YANG,
Jinlong ZHAO,
Xinrui ZHANG,
Yingjie YU,
Ke YANG.
Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. Acta Metall Sin, 2024, 60(7): 890-900.
1 |
Oh K T, Choo S U, Kim K M, et al. A stainless steel bracket for orthodontic application [J]. Eur. J. Orthod., 2005, 27: 237
|
2 |
Winters G L, Nutt M J. Stainless Steels for Medical and Surgical Applications [M]. West Conshohocken: ASTM International, 2003: 13
|
3 |
Bombač D, Brojan M, Fajfar P, et al. Review of materials in medical applications [J]. RMZ-Mater. Geoenviron., 2007, 54: 471
|
4 |
Simionescu N, Benea L, Dumitrascu V M. The synergistic effect of proteins and reactive oxygen species on electrochemical behaviour of 316L stainless steel for biomedical applications [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 374: 012058
|
5 |
Chen Q Z, Thouas G A. Metallic implant biomaterials [J]. Mater. Sci. Eng., 2015, R87: 1
|
6 |
Wen M, Li W, Cao X M. Research on the mechanical properties for medical stainless steel [J]. Adv. Mater. Res., 2012, 383-390: 3976
|
7 |
Padilha A F, Plaut R L, Rios P R. Annealing of cold-worked austenitic stainless steels [J]. ISIJ Int., 2003, 43: 135
|
8 |
McGuire M F. Stainless Steels for Design Engineers [M]. New York: ASM International, 2008: 69
|
9 |
Singh N, Nanda T, Kumar B R, et al. In situ investigations of microstructural changes during tensile deformation of AISI 304L stainless steels [J]. Arch. Civ. Mech. Eng., 2019, 19: 672
|
10 |
Zhang E L, Zhao X T, Hu J L, et al. Antibacterial metals and alloys for potential biomedical implants [J]. Bioact. Mater., 2021, 6: 2569
doi: 10.1016/j.bioactmat.2021.01.030
pmid: 33615045
|
11 |
Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms [J]. Annu. Rev. Microbiol., 1995, 49: 711
pmid: 8561477
|
12 |
Sutherland I W. The biofilm matrix—An immobilized but dynamic microbial environment [J]. Trends Microbiol., 2001, 9: 222
pmid: 11336839
|
13 |
Hall-Stoodley L, Costerton J W, Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases [J]. Nat. Rev. Microbiol., 2004, 2: 95
doi: 10.1038/nrmicro821
pmid: 15040259
|
14 |
An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces [J]. J. Biomed. Mater. Res., 1998, 43: 338
|
15 |
Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications [J]. Nanomedicine, 2011, 7: 22
doi: 10.1016/j.nano.2010.10.005
pmid: 21050895
|
16 |
Ye L F, Chen H B, Lin Z L, et al. Research progress in antibacterial stainless steel [J]. Hot Work. Technol., 2014, 43(20): 10
|
16 |
叶丽芳, 陈惠波, 林照亮 等. 不锈钢抗菌技术研究进展 [J]. 热加工工艺, 2014, 43(20): 10
|
17 |
Xu M Y, Wang C, Li Y G. Research progress of antibacterial stainless steel [J]. Foundry Technol., 2016, 37(6): 1085
|
17 |
徐鸣悦, 王 丛, 李运刚. 抗菌不锈钢的研究进展 [J]. 铸造技术, 2016, 37(6): 1085
|
18 |
Kircheva N, Dudev T. Competition between abiogenic and biogenic metal cations in biological systems: Mechanisms of gallium's anticancer and antibacterial effect [J]. J. Inorg. Biochem., 2021, 214: 111309
|
19 |
Chitambar C R. Gallium complexes as anticancer drugs [A]. Metallo-Drugs: Development and Action of Anticancer Agents [M]. Berlin: De Gruyter, 2018: 281
|
20 |
Wazzan N, Soliman K A, Halim W S A. Theoretical study of gallium nitride nanocage as a carrier for 5-fluorouracil anticancer drug [J]. J. Mol. Model., 2019, 25: 265
doi: 10.1007/s00894-019-4147-8
pmid: 31444705
|
21 |
Yin H Y, Gao J J, Chen X M, et al. A gallium(III) complex that engages protein disulfide isomerase A3 (PDIA3) as an anticancer target [J]. Angew. Chem. Int. Ed., 2020, 59: 20147
|
22 |
Halevas E, Mavroidi B, Antonoglou O, et al. Structurally characterized gallium-chrysin complexes with anticancer potential [J]. Dalton Trans., 2020, 49: 2734
doi: 10.1039/c9dt04540f
pmid: 32064490
|
23 |
Auger C, Lemire J, Appanna V, et al. Gallium in bacteria, metabolic and medical implications [A]. Encyclopedia of Metalloproteins [M]. New York: Springer, 2013: 800
|
24 |
Minandri F, Bonchi C, Frangipani E, et al. Promises and failures of gallium as an antibacterial agent [J]. Future Microbiol., 2014, 9: 379
doi: 10.2217/fmb.14.3
pmid: 24762310
|
25 |
Verron E, Bouler J M, Scimeca J C. Gallium as a potential candidate for treatment of osteoporosis [J]. Drug Discov. Today, 2012, 17: 1127
doi: 10.1016/j.drudis.2012.06.007
pmid: 22710367
|
26 |
Kaneko Y, Thoendel M, Olakanmi O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity [J]. J. Clin. Invest., 2007, 117: 877
|
27 |
Olakanmi O, Britigan B E, Schlesinger L S. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages [J]. Infect. Immun., 2000, 68: 5619
doi: 10.1128/IAI.68.10.5619-5627.2000
pmid: 10992462
|
28 |
Harrington J R, Martens R J, Cohen N D, et al. Antimicrobial activity of gallium against virulent Rhodococcus equiin vitro and in vivo [J]. J. Vet. Pharmacol. Ther., 2006, 29: 121
pmid: 16515666
|
29 |
Coleman M, Kuskie K, Liu M, et al. In vitro antimicrobial activity of gallium maltolate against virulent Rhodococcus equi [J]. Vet. Microbiol., 2010, 146: 175
|
30 |
Baldoni D, Steinhuber A, Zimmerli W, et al. In vitro activity of gallium maltolate against staphylococci in logarithmic, stationary, and biofilm growth phases: Comparison of conventional and calorimetric susceptibility testing methods [J]. Antimicrob. Agents. Chemother., 2010, 54: 157
doi: 10.1128/AAC.00700-09
pmid: 19805560
|
31 |
Chitambar C R. Gallium and its competing roles with iron in biological systems [J]. Biochim. Biophys. Acta., 2016, 1863: 2044
doi: 10.1016/j.bbamcr.2016.04.027
pmid: 27150508
|
32 |
Wu H X, Li R, Ge X. In vitro clearance effects of gallium nitrate on biofilms of clinically isolated Staphylococcus aureus [J]. Chin. J. Infect. Control, 2015, 14: 223
|
32 |
吴浩昕, 李 蓉, 葛 新. 硝酸镓对临床分离金黄色葡萄球菌生物膜的体外清除作用 [J]. 中国感染控制杂志, 2015, 14: 223
|
33 |
Rimondini L, Valle C D, Cochis A, et al. The biofilm formation onto implants and prosthetic materials may be contrasted using gallium (3+) [J]. Key Eng. Mater., 2013, 587: 315
|
34 |
Bernstein L R, Zhang L K. Gallium maltolate has in vitro antiviral activity against SARS-CoV-2 and is a potential treatment for COVID-19 [J]. Antivir. Chem. Chemother., 2020, 28: 2040206620983780
|
35 |
Xu G M, Zhang C X, Ning L, et al. Evaluation on the cytotoxicity of gallium alloy by MTT-assay [J]. Chin. J. Stomatol., 2001, 36: 189
pmid: 11812339
|
35 |
徐钢梅, 张彩霞, 宁 丽 等. MTT法评价镓合金的细胞毒性[J]. 中华口腔医学杂志, 2001, 36: 189
|
36 |
Goss C H, Kaneko Y, Khuu L, et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections [J]. Sci. Transl. Med., 2018, 10: eaat7520
|
37 |
Li L, Chang H, Yong N, et al. Superior antibacterial activity of gallium based liquid metals due to Ga3+ induced intracellular ROS generation [J]. J. Mater. Chem., 2021, 9B: 85
|
38 |
Cochis A, Azzimonti B, Chiesa R, et al. Metallurgical gallium additions to titanium alloys demonstrate a strong time-increasing antibacterial activity without any cellular toxicity [J]. ACS Biomater. Sci. Eng., 2019, 5: 2815
|
39 |
Choi S R, Britigan B E, Narayanasamy P. Iron/heme metabolism-targeted gallium(III) nanoparticles are active against extracellular and intracellular Pseudomonas aeruginosa and Acinetobacter baumannii [J]. Antimicrob. Agents. Chemother., 2019, 63: e02643-18
|
40 |
Piatek M, Griffith D M, Kavanagh K. Quantitative proteomic reveals gallium maltolate induces an iron-limited stress response and reduced quorum-sensing in Pseudomonas aeruginosa [J]. J. Biol. Inorg. Chem., 2020, 25: 1153
|
41 |
Gao C D, Zeng Z H, Peng S P, et al. Magnetostrictive alloys: Promising materials for biomedical applications [J]. Bioact. Mater., 2022, 8: 177
doi: 10.1016/j.bioactmat.2021.06.025
pmid: 34541395
|
42 |
Eshed M, Lellouche J, Gedanken A, et al. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO [J]. Adv. Funct. Mater., 2014, 24: 1382
|
43 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 111
|
43 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 111
|
44 |
Cai T, Li K Q, Zhang Z J, et al. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53: 61
doi: 10.1016/j.jmst.2020.04.027
|
45 |
Hacht B. Gallium(III) ion hydrolysis under physiological conditions [J]. Bull. Korean Chem. Soc., 2008, 29: 372
|
46 |
Orlov Y F, Maslov E I, Belkina E I. Solubilities of metal hydroxides [J]. Russ. J. Inorg. Chem., 2013, 58: 1306
|
47 |
Moeller T, King G L. The some physicochemical studies on Gallium(III) salt solutions [J]. J. Phys. Chem., 1950, 54: 999
|
48 |
Hijazi S, Visca P, Frangipani E. Gallium-protoporphyrin IX inhibits Pseudomonas aeruginosa growth by targeting cytochromes [J]. Front. Cell. Infect. Microbiol., 2017, 7: 12
|
49 |
Braud A, Hoegy F, Jezequel K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway [J]. Environ. Microbiol., 2009, 11: 1079
|
50 |
Todorov L, Kostova I, Lanthanum Traykova M. gallium and their impact on oxidative stress [J]. Curr. Med. Chem., 2019, 26: 4280
doi: 10.2174/0929867326666190104165311
pmid: 31438825
|
51 |
Cao H L, Liu X Y, Meng F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects [J]. Biomaterials, 2011, 32: 693
doi: 10.1016/j.biomaterials.2010.09.066
pmid: 20970183
|
52 |
Wang G M, Jin W H, Qasim A M, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species [J]. Biomaterials, 2017, 124: 25
doi: S0142-9612(17)30042-X
pmid: 28182874
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|