Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 869-880    DOI: 10.11900/0412.1961.2022.00163
  研究论文 本期目录 | 过刊浏览 |
TC19合金铸锭中ZrMo元素的宏观偏析行为
朱绍祥1,2, 王清江1,2(), 刘建荣2, 陈志勇2
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Macrosegregation of Zr and Mo in TC19 Titanium Alloy Ingot
ZHU Shaoxiang1,2, WANG Qingjiang1,2(), LIU Jianrong2, CHEN Zhiyong2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

朱绍祥, 王清江, 刘建荣, 陈志勇. TC19合金铸锭中ZrMo元素的宏观偏析行为[J]. 金属学报, 2024, 60(7): 869-880.
Shaoxiang ZHU, Qingjiang WANG, Jianrong LIU, Zhiyong CHEN. Macrosegregation of Zr and Mo in TC19 Titanium Alloy Ingot[J]. Acta Metall Sin, 2024, 60(7): 869-880.

全文: PDF(2385 KB)   HTML
摘要: 

为了提高航空发动机转动件用高温钛合金铸锭的成分均匀性,本工作研究了真空自耗电弧熔炼(VAR) TC19 (Ti-6Al-2Sn-4Zr-6Mo,质量分数,%)合金工业化铸锭中合金元素的宏观偏析行为,运用定向凝固技术分析了合金元素的偏析机制。结果表明,Al、Sn元素无明显宏观偏析,Zr、Mo元素存在宏观偏析。Zr元素在铸锭中心等轴晶区含量低,顶部冒口区含量高;Mo元素分布与Zr的分布趋势相反。Zr、Mo元素偏析与铸锭凝固组织相对应。凝固速率差异是造成Zr、Mo元素宏观偏析的主要原因;表面细晶区和柱状晶区由于较快的凝固速率,元素来不及再分配,基本保留液相的均匀成分;铸锭心部等轴晶区由于其较低的凝固速率和温度梯度,固/液界面呈平面或胞状,有利于元素在固/液界面充分再分配,使得凝固分配系数小于1的正偏析元素Zr在液相中的浓度大于固相,随凝固过程沿铸锭心部向冒口方向逐渐增加;凝固分配系数大于1的负偏析元素Mo在液相中的浓度小于固相,沿铸锭心部向冒口方向逐渐减少。液固两相的密度差造成等轴晶沉降及浮力促进了元素的宏观偏析。电磁搅拌产生的Lorentz力是熔池流动的主要驱动力,使熔池产生环轴向流场,与浮力产生的密度流和自感Lorentz力产生的环流相互作用,可降低溶质元素宏观偏析。

关键词 TC19合金真空自耗电弧熔炼宏观偏析定向凝固电磁搅拌    
Abstract

The α + β titanium alloy TC19 (Ti-6Al-2Sn-4Zr-6Mo, mass fraction, %) has shown great application potential in aerospace because of its superior moderate-temperature mechanical properties. The bulk composition of this alloy contains Al, Sn, Zr, and Mo, which are the main alloying elements in the field of high-temperature titanium alloys. Compared with Ti, Al and Sn, which are characterized by lower melting points and densities, can be easily volatilized during vacuum arc remelting (VAR). In addition, Zr has a higher density, and Mo has a higher melting point and density compared with Ti. Therefore, controlling the chemical homogeneity either in the macro- or micro-scale for industrial-scale titanium alloy ingot with complex compositions is challenging. In this study, the macrosegregation behavior and mechanism of Zr and Mo were investigated systematically in a TC19 industrial-scale ingot (ϕ720 mm × 1160 mm) by using a directional solidification technology where samples were solidified under a constant-temperature gradient of approximately 200oC/cm and a wide range of withdrawal rates (solidification rate) from 3 mm/h to 150 mm/h. Result shows an evident macrosegregation of Zr and Mo, which is primarily attributed to the difference in the solidification rate during solidification. Zr as the negative segregation element was pushed to the front of the solid-liquid interface continuously, whereas Mo as the positive segregation element was enriched in the solid phase at the solid-liquid interface. Consequently, the content of Zr is relatively lower at the center equiaxed crystal zone but higher at the top casting riser in the TC19 industrial-scale ingot. However, Mo exhibits the opposite trend in comparison with Zr. The degree of element segregation decreased with the increase of the solidification rate. Moreover, the “crystal rain” caused by the density difference between liquid and solid phases as well as buoyancy would promote the macrosegregation in industrial-scale ingots. The Lorentz force arising from electromagnetic stirring is the main driving force for the flow of the molten pool during VAR. Electromagnetic stirring plays an important role in accelerating the melt flow in the molten pool, and the strong melt flow is favorable to break the correspondence between the grain structure, thereby weakening macrosegregation. Therefore, the low-temperature gradient and low solidification rate, that is, near equilibrium solidification conditions, primarily cause the macrosegregation in TC19 titanium alloy industrial-scale ingots.

Key wordsTC19 titanium alloy    vacuum arc remelting    macrosegregation    directional solidification    electromagnetic stirring
收稿日期: 2022-04-08     
ZTFLH:  TG146.2  
基金资助:国家科技重大专项项目(J2019-VI-0005-0119)
通讯作者: 王清江,qjwang@imr.ac.cn,主要从事高温钛合金的研究
Corresponding author: WANG Qingjiang, professor, Tel: (024)83978830, E-mail: qjwang@imr.ac.cn
作者简介: 朱绍祥,男,1983年生,高级工程师,博士生
图1  铸锭纵向解剖及化学分析取样位置示意图
图2  2.1 t TC19合金铸锭最后一次真空自耗电弧熔炼(VAR)工艺参数及铸锭纵剖低倍凝固组织
图3  TC19合金铸锭纵剖面Al、Sn、Zr和Mo元素分布
图4  TC19合金不同凝固速率定向凝固样品低倍组织
图5  不同凝固速率下TC19定向凝固样品元素沿生长方向成分分布
AlloyAlSnZrMoVCrFe
Binary phase diagram1.050.920.901.500.900.770.60
Ti-10231.13---0.95-0.38
Ti-171.061.150.771.15-0.74-
Ti-62421.021.080.721.09---
表1  钛合金中元素分配系数[19]
图6  利用JMatPro软件计算TC19合金固液相变时密度变化
图7  Zr宏观偏析及“晶体雨”示意图
图8  电磁搅拌铸锭横截面宏观组织
1 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
2 Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components [J]. Metals, 2020, 10: 705
3 Bania P J. Next generation titanium alloys for elevated temperature service [J]. ISIJ Int., 1991, 31: 840
4 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aero. Mater., 2014, 34(4): 1
4 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
doi: 10.11868/j.issn.1005-5053.2014.4.001
5 Mitchell A.. Melting, casting and forging problems in titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 257
6 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
6 王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
7 Xu F, Li G P, Yang R, et al. Effect of zirconium content on precipitation of silicide in Ti-1100 alloy [J]. Acta Metall. Sin., 2006, 42: 770
7 徐 锋, 李阁平, 杨 锐 等. Zr含量对Ti-1100合金中硅化物析出的影响 [J]. 金属学报, 2006, 42: 770
8 Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy [J]. Chin. J. Mater. Res., 2009, 23: 1
8 赵 亮, 刘建荣, 王清江 等. 析出相对Ti60钛合金蠕变和持久性能的影响 [J]. 材料研究学报, 2009, 23: 1
9 Qiu J K. Investigation on dwell fatigue behavior of Ti-6Al-2Sn-4Zr-xMo (x = 2-6) alloys [D]. Beijing: University of Chinese Academy of Sciences, 2015
9 邱建科. Ti-6Al-2Sn-4Zr-xMo (x = 2~6)合金保载疲劳行为研究 [D]. 北京: 中国科学院大学, 2015
10 Li J, Xia M X, Hu Q D, et al. Solutions in improving homogeneities of heavy ingots [J]. Acta Metall. Sin., 2018, 54: 773
doi: 10.11900/0412.1961.2017.00525
10 李 军, 夏明许, 胡侨丹 等. 大型铸锭均质化问题及其新解 [J]. 金属学报, 2018, 54: 773
11 Li D Z, Chen X Q, Fu P X, et al. Inclusion flotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2015, 5: 5572
12 Zhang Y, Li X X, Wei K, et al. Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56: 1123
doi: 10.11900/0412.1961.2020.00101
12 张 勇, 李鑫旭, 韦 康 等. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56: 1123
13 Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots [J]. Mater. Sci. Eng., 1999, A263: 224
14 Zagrebelnyy D, Krane M J M. Segregation development in multiple melt vacuum arc remelting [J]. Metall. Mater. Trans., 2009, 40B: 281
15 Yin X C. Study on beta flecks and formation mechanisms in TC17 alloy [D]. Hefei: University of Science and Technology of China, 2020
15 尹续臣. TC17合金中的β斑及其形成机制研究 [D]. 合肥: 中国科学技术大学, 2020
16 Spittle J A. Columnar to equiaxed grain transition in as solidified alloys [J]. Int. Mater. Rev., 2006, 51: 247
17 Hu Q M, Xu D S, Li D, et al. Electronic structure origins of ordering in binary α-Ti alloys [J]. Acta Metall. Sin., 2002, 38: 562
17 胡青苗, 徐东生, 李 东 等. 钛合金中的有序化 I: 电子结构根源 [J]. 金属学报, 2002, 38: 562
18 Cui Z Q, Liu B X. Principles of Metallurgy and Heat Treatment [M]. Harbin: Harbin Institute of Technology Press, 1998: 66
18 崔忠圻, 刘北兴. 金属学与热处理原理 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 66
19 Mitchell A, Kawakami A, Cockcroft S L. Segregation in titanium alloy ingots [J]. High Temp. Mater. Processes, 2007, 26: 59
20 Yin X C, Liu J R, Wang Q J, et al. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method [J]. J. Mater. Sci. Technol., 2020, 48: 36
doi: 10.1016/j.jmst.2019.12.018
21 Yang Z J, Kou H C, Li J S, et al. Macrosegregation behavior of Ti-10V-2Fe-3Al alloy during vacuum consumable arc remelting process [J]. J. Mater. Eng. Perform., 2011, 20: 65
22 Zagrebelnyy D V. Modeling macrosegregation during the vacuum arc remelting of Ti-10V-2Fe-3Al alloy [D]. West Lafayette: Purdue University, 2007
23 Jiang D B, Zhu M Y. Center segregation with final electromagnetic stirring in billet continuous casting process [J]. Metall. Mater. Trans., 2017, 48B: 444
24 Chapelle P, Jardy A, Bellot J P, et al. Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting [J]. J. Mater. Sci., 2008, 43: 5734
25 Liu X, Feng G, Zhou Y, et al. Macrosegregation and the underlying mechanism in Ti-6.5Al-1.0Cr-0.5Fe-6.0Mo-3.0Sn-4.0Zr alloy [J]. Prog. Nat. Sci.: Mater. Int., 2019, 29: 224
26 Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification [M]. 4th Ed., Beijing: Higher Education Press, 2010: 14
26 Kurz W, Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 第4版. 北京: 高等教育出版社, 2010: 14
27 Mitchell A, Kawakami A, Cockcroft S L. Beta fleck and segregation in titanium alloy ingots [J]. High Temp. Mater. Processes, 2006, 25: 337
28 Mitchell A. Solidification in remelting processes [J]. Mater. Sci. Eng., 2005, A413-414: 10
29 Li J, Wu M H, Ludwig A, et al. Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model [J]. Int. J. Heat Mass Transfer, 2014, 72: 668
30 Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting [J]. Mater. Sci. Technol., 2000, 16: 699
31 Fan K, Wu L C, Li J J, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys [J]. Rare Met. Mater. Eng., 2020, 49: 871
31 樊 凯, 吴林财, 李俊杰 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟 [J]. 稀有金属材料与工程, 2020, 49: 871
32 Wang B B, Chang H, Li J S, et al. Numerical simulation of electromagnetic stirring during vacuum arc remelting [J]. Rare Met. Mater. Eng., 2009, 38: 1969
32 王斌斌, 常 辉, 李金山 等. 真空自耗电弧熔炼中电磁搅拌的数值模拟 [J]. 稀有金属材料与工程, 2009, 38: 1969
[1] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[6] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[9] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[10] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[11] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[12] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[13] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[15] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.