Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1347-1356    DOI: 10.11900/0412.1961.2017.00248
  研究论文 本期目录 | 过刊浏览 |
流场环境中AZ31镁合金的腐蚀行为研究
韩林原, 李旋, 储成林(), 白晶, 薛烽
东南大学材料科学与工程学院 南京 211189
Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions
Linyuan HAN, Xuan LI, Chenglin CHU(), Jing BAI, Feng XUE
School of Material Science and Engineering, Southeast University, Nanjing 211189, China
引用本文:

韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. Acta Metall Sin, 2017, 53(10): 1347-1356.

全文: PDF(4519 KB)   HTML
摘要: 

采用自主构建的体外模拟流场环境实验平台,通过电化学阻抗谱(EIS)测量、拉伸实验、模拟体液pH值变化测试、SEM观察等方法,对AZ31镁合金在流场环境中的腐蚀行为进行了研究。从腐蚀电化学角度探究了流场中镁合金腐蚀速率与流速的定量关系,并采用ANSYS有限元分析研究了流态与剪切力作用对镁合金不同部位腐蚀差异的影响。结果表明,流场会加速AZ31镁合金的腐蚀,在腐蚀初期,腐蚀电流密度icorr与流场平均流速ν之间存在icorr-1=ic-1+Aν-1/2的关系,其中,ic为不考虑扩散影响时的腐蚀电流密度,A为常数。腐蚀速率随流速增加而增大,且随着腐蚀时间延长,由于腐蚀产物的影响而逐渐偏离icorr-1~ν-1/2的线性关系。有限元分析表明,样品不同部位表面流体流态及剪切应力分布不同,局部传质系数K存在显著差异,不同流速下试样边缘部位的传质系数是中间的4~5倍,试样局部腐蚀形貌与剪切应力分布及流态差异相对应。

关键词 AZ31镁合金腐蚀行为流场电化学传质    
Abstract

Magnesium alloy is now a promising bio-absorbable material. The previous researches on the corrosion and degradation behavior of biomedical magnesium alloy are mainly carried out in static conditions in vitro. However, considering the real physiological flow field of different flow states in vivo, the static degradation experiments can not effectively simulate the real situation. It is important to study the effect of flow field on the corrosion behavior of magnesium alloy and establish the relationship between flow rate and corrosion rate for the research and development of biomedical magnesium alloy. The corrosion behavior of AZ31 magnesium alloy in the flow field was studied using a self-designed dynamic test bench in vitro by electrochemical measurement, tensile method, pH value test of simulated body fluid (SBF) and SEM observation in this work. The relationship between the corrosion rate of magnesium alloy and the flow rate of the flow field was investigated from the perspective of corrosion electrochemistry. The influence of flow state and flow-induced shear stress (FISS) on corrosion behaviors at different positions of magnesium alloy was also studied by ANSYS finite element analysis. The results show that the flow field will accelerate the corrosion of AZ31 magnesium alloy and the corrosion rate increases with the increase of the flow rate. There is a relationship between the corrosion current density icorr of magnesium alloy and the average flow rate ν during the early corrosion stage, namely icorr-1=ic-1+Aν-1/2, where ic is the corrosion current density ignoring the influence of diffusion, and A is a constant. With the corrosion time extended, due to the influence of the corrosion products, the experimental results gradually deviate from the calculated linear relationship of icorr-1-1/2. Also, there are significant differences in the fluid flow state and FISS distributions at different positions of the sample. The mass transfer coefficient at the edge of the sample under different flow rates is 4~5 times bigger than that at the middle position. The localized corrosion morphology corresponds well to the FISS distribution and the difference of flow state.

Key wordsAZ31 magnesium alloy    corrosion behavior    flow field    electrochemistry    mass transfer
收稿日期: 2017-06-22     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目Nos.31570961、51771054和国家重点研发计划项目No.2016YFC1102402
作者简介:

作者简介 韩林原,男,1992年生,博士生

图1  体外模拟流场环境实验平台示意图
图2  静态和流速v为0.265 cm/s的流场环境下AZ31镁合金的电化学阻抗谱(EIS)
图3  拟合电路示意图
图4  静态和不同流速下AZ31镁合金极化电阻Rp、电荷转移时的电阻Rdl和产物沉积层电阻R1随时间的变化
图5  静态和不同流速下AZ31镁合金抗拉强度和溶液pH值的变化
图6  腐蚀不同时间后流速v与腐蚀电流密度icorr的关系
图7  AZ31镁合金在v=0.265 cm/s下腐蚀72 h之后腐蚀产物的SEM像和EDS
图8  流速为0.265 cm/s时流场内流速迹线与试样受剪切应力分布模拟结果
ν / (cms-1) τe / Pa τc / Pa Ke / (ms-1) Kc / (ms-1) R
0.066 0.098 0.006 11.37 2.81 4.04
0.133 0.247 0.016 18.06 4.60 3.93
0.199 0.569 0.029 27.41 6.19 4.43
0.265 0.989 0.039 36.13 7.18 5.04
表1  不同流速流场中试样边缘和中心位置的剪切应力与传质系数
图9  静态和流速为0.265 cm/s的流场环境中AZ31镁合金腐蚀72 h后边缘区域和中央区域表面腐蚀形貌的SEM像
[1] Zheng Y F, Wu Y H.Revolutionizing metallic biomaterials[J]. Acta Metall. Sin., 2017, 53: 257(郑玉峰, 吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53: 257)
[2] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[3] Yun Y H, Dong Z Y, Lee N, et al.Revolutionizing biodegradable metals[J]. Materialstoday, 2009, 12: 22
[4] Witte F, Ulrich H, Rudert M, et al.Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response[J]. J. Biomed. Mater. Res., 2007, 81A: 748
[5] Li H W, Xu K, Yang K, et al.The degradation performance of AZ31 bioabsorbable magnesium alloy stent implanted in the abdominal aorta of rabbits[J]. J. Intervent. Radiol., 2010, 19: 315(李海伟, 徐克, 杨柯等. 可降解AZ31镁合金支架在兔腹主动脉的降解性能研究[J]. 介入放射学杂志, 2010, 19: 315)
[6] Wang S F, Wang C Y, Yao Y S, et al.Repair of mandibular defects with AZ31 Magnesium alloy in rabbits[J]. J. Oral Sci. Res., 2013, 29: 33(王树峰, 王程越, 姚玉胜等. AZ31镁合金修复兔下颌骨缺损的实验研究[J]. 口腔医学研究, 2013, 29: 33)
[7] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[8] Deng X G.The corrosion behavior of AZ31 magnesium alloy in simulated human body environment [D]. Dalian: Dalian University of Technology, 2009(邓希光. AZ31镁合金在模拟人体环境中的腐蚀行为研究 [D]. 大连: 大连理工大学, 2009)
[9] Mueller W D, Nascimento M L, de Mele M F L. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications[J]. Acta Biomater., 2010, 6: 1749
[10] Witte F, Fischer J, Nellesen J, et al.In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27: 1013
[11] Bontrager J, Mahapatro A, Gomes A S.Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions[J]. J. Microsc., 2014, 255: 104
[12] Lévesque J, Hermawan H, Dubé D, et al.Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials[J]. Acta Biomater., 2008, 4: 284
[13] Mai E D, Liu H N.Investigation on magnesium degradation under flow versus static conditions using a novel impedance-driven flow apparatus[J]. Prog. Nat. Sci., 2014, 24: 554
[14] Wang J, Giridharan V, Shanov V, et al.Flow-induced corrosion behavior of absorbable magnesium-based stents[J]. Acta Biomater., 2014, 10: 5213
[15] Md Saad A P, Abdul Rahim R A, Harun M N, et al. The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone[J]. Mater. Des., 2017, 122: 268
[16] Koo Y, Tiasha T, Shanov V N, et al.Expandable Mg-based helical stent assessment using static, dynamic, and porcine ex vivo models[J]. Sci. Rep., 2017, 7: 1173
[17] Kirkland N T, Birbilis N, Staiger M P.Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations[J]. Acta Biomater., 2012, 8: 925
[18] Lao Y H, Zhang W W, Xu X F, et al.Dynamic degradation behavior of AZ31 magnesium alloy in artificial plasma[J]. Rare Met. Mater. Eng., 2014, 43: 1242(劳永华, 张文威, 徐笑凡等. AZ31镁合金在人工血浆中的动态降解行为[J]. 稀有金属材料与工程, 2014, 43: 1242)
[19] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002: 46(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 46)
[20] Wang J, Smith C E, Sankar J, et al.Absorbable magnesium-based stent: Physiological factors to consider for in vitro degradation assessments[J]. Regen. Biomater., 2015, 2: 59
[21] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 65(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 65)
[22] Bagotsky V S.Fundamentals of Electrochemistry[M]. 2nd Ed., New Jersey: John Wiley & Sons, Inc., 2005: 51
[23] Zheng Y G, Yao Z M, Ke W.Review on the effects of hydrodynamic factors on erosion-corrosion[J]. Corros. Sci. Prot. Technol., 2000, 12: 36(郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制[J]. 腐蚀科学与防护技术, 2000, 12: 36)
[24] Revie R W.Uhlig's Corrosion Handbook[M]. 3rd Ed., New Jersey: John Wiley & Sons, Inc., 2011: 203
[25] Zhang G A, Zeng Y, Guo X P, et al.Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment[J]. Corros. Sci., 2012, 65: 37
[26] Wang J, Jang Y, Wan G J, et al.Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study[J]. Corros. Sci., 2016, 104: 277
[27] Hao X C, Zhou W Q, Zheng Z G.Study on electrochemical corrosion behaviors of AZ31 magnesium alloys in NaCl solution[J]. J. Shenyang Norm. Univ.(Nat. Sci.), 2004, 22: 117(郝献超, 周婉秋, 郑志国. AZ31镁合金在NaCl溶液中的电化学腐蚀行为研究[J]. 沈阳师范大学学报(自然科学版), 2004, 22: 117)
[28] Tan Q B, Yang H G, Zhu X M.Electrochemical corrosion behaviors of AZ31 Magnesium alloys[J]. J. Dalian Jiaotong Univ., 2008, 29(1): 89(谭庆彪, 杨海刚, 朱雪梅. AZ31镁合金的电化学腐蚀行为[J]. 大连交通大学学报, 2008, 29(1): 89)
[29] Paolinelli L D, Carr G E.Mechanical integrity of corrosion product films on rotating cylinder specimens[J]. Corros. Sci., 2015, 92: 155
[30] Liu J J.Numerical simulation of flow-induced corrosion of metals in high flow multiphase seawater and test verification [D]. Beijing: Beijing University of Chemical Technology, 2006(刘景军. 高速多相海水中材料流动腐蚀的数值模拟与实验验证 [D]. 北京: 北京化工大学, 2006)
[31] Heitz E.Mechanistically based prevention strategies of flow-induced corrosion[J]. Electrochim. Acta, 1996, 41: 503
[32] Heitz E, Kreysa G, Loss C.Investigation of hydrodynamic test systems for the selection of high flow rate resistant materials[J]. J. Appl. Electrochem., 1979, 9: 243
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[4] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[5] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[6] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[7] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[8] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[11] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[12] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[13] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[14] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[15] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.