金属学报, 2024, 60(7): 881-889 DOI: 10.11900/0412.1961.2022.00634

研究论文

预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响

汪丽佳1, 胡励,1, 苗天虎1, 周涛1, 何曲波2, 刘相果3

1 重庆理工大学 材料科学与工程学院 重庆 400054

2 重庆材料研究院有限公司 重庆 400707

3 重庆中镭科技有限公司 重庆 400800

Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature

WANG Lijia1, HU Li,1, MIAO Tianhu1, ZHOU Tao1, HE Qubo2, LIU Xiangguo3

1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China

2 Chongqing Material Research Institute Co. Ltd., Chongqing 400707, China

3 Chongqing Zhonglei Tech. Co. Ltd., Chongqing 400800, China

通讯作者: 胡 励,huli@cqut.edu.cn,主要从事镁合金板材特种塑性加工及变形行为研究

责任编辑: 毕淑娟

收稿日期: 2022-12-18   修回日期: 2023-02-20  

基金资助: 国家自然科学基金项目(52274374)
中国博士后科学基金项目(2021M703592)
重庆市博士后研究(一等)资助项目(2021XM1022)
重庆市教育委员会科学技术研究计划青年项目(KJQN202101141)
重庆理工大学校级研究生创新项目(gzlcx20222004)

Corresponding authors: HU Li, associate professor, Tel: 17358428920, E-mail:huli@cqut.edu.cn

Received: 2022-12-18   Revised: 2023-02-20  

Fund supported: National Natural Science Foundation of China(52274374)
China Postdoctoral Science Foundation(2021M703592)
Special Funded Project of Chongqing Postdoctoral Research Program(2021XM1022)
Qingnian Project of Science and Technology Research Program of Chongqing Education Commission of China(KJQN202101141)
Postgraduate Innovation Project of Chongqing University of Technology(gzlcx20222004)

作者简介 About authors

汪丽佳,女,1998年生,硕士生

摘要

为揭示双峰分离非基面织构AZ31镁合金板材预变形后的室温变形行为及微观组织演化规律,对该板材施加压下量5%的深冷轧制预变形,结合室温单轴拉伸和微观组织表征实验,研究预变形对制备板材力学行为及微观组织演变的影响。结果表明,沿轧制方向(RD)试样的初始屈服强度和断裂延伸率较未预变形试样分别提升212.5%和降低56.9%。沿板材横向(TD)试样的初始屈服强度和断裂延伸率较未预变形试样分别降低6.7%和提升37.9%。不同方向试样初始屈服强度的差异主要是由于TD试样中TD织构组分所对应的晶粒比RD试样中双峰分离非基面织构组分所对应的晶粒更容易激活基面<a>滑移。断裂延伸率的差异主要是由于在RD试样中,{101¯2}拉伸孪晶的扩张受到抑制,会较早出现{101¯1}压缩孪晶,而在TD试样中,{101¯2}拉伸孪晶可以有效扩张,且后期出现一定数量的{101¯1}-{101¯2}双孪晶来承载/协调塑性应变。

关键词: AZ31镁合金; 双峰分离非基面织构; 预变形; 微观组织演化; 塑性变形机制

Abstract

An AZ31 Mg alloy sheet with bimodal non-basal texture exhibits good formability at room temperature. However, its initial yield stress (YS) is relatively low during uniaxial tension along the rolling direction (RD) at room temperature, which limits its potential for further application. Recent studies have demonstrated that introducing {101¯2} extension twin (ET) through predeformation can improve the mechanical properties of Mg alloy sheets with a basal texture at room temperature. However, the predeformation process for Mg alloy sheets with non-basal texture has rarely been investigated, along with their subsequent plastic deformation behavior at room temperature. Therefore, to investigate the room temperature deformation behavior and microstructure evolution of an AZ31 Mg alloy sheet with bimodal non-basal texture after predeformation, this work exerted a 5% thickness reduction on the sheet via cryogenic rolling. Then uniaxial tension experiments at room temperature and microstructure characterization experiments were conducted to illuminate the effect of predeformation on the mechanical behavior and microstructure evolution of the fabricated sheet. The findings indicate that when loaded along the RD, the YS and fracture elongation (FE) of the predeformed sample are 212.5% larger and 56.9% smaller than those of the non-predeformed sample. When loaded along the transverse direction (TD), the YS and FE of the predeformed sample are 6.7% smaller and 37.9% larger than those of the non-predeformed sample. The difference in YS in the predeformed samples is primarily attributed to easier activation of basal <a> slip in grains with a TD texture component in the TD sample than in grains with a bimodal non-basal texture component in the RD sample. The difference in FE in the predeformed samples is due to the inhibition of the expansion of preexsiting {101¯2} ETs in the RD sample, resulting in the early occurrence of {101¯1} compression twins (CTs). In comparison, the expansion of preexsiting {101¯2} ETs can be effectively performed in the TD sample. Additionally, some {101¯1}-{101¯2} double twins (DTs) would be activated at the later stage of tensile deformation to sustain and/or accommodate local plastic strain.

Keywords: AZ31 Mg alloy; bimodal non-basal texture; pre-deformation; microstructure evolution; plastic deformation mechanism

PDF (3763KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889 DOI:10.11900/0412.1961.2022.00634

WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. Acta Metallurgica Sinica, 2024, 60(7): 881-889 DOI:10.11900/0412.1961.2022.00634

Mg及其合金具有密度低、比强度和比刚度高、弹性模量大、抗震性能好、生物相容性好和储氢容量大等优秀的物理化学性能,被广泛应用于航空航天和交通运输等领域[1~4]。然而,由于镁合金具有hcp结构和较少的滑移系,导致其强度和塑性较差,阻碍了镁合金在结构部件上的应用[5]。研究[6~11]表明,预制{101¯2}拉伸孪晶(extension twin,ET)可以有效改善镁合金的成形性能并提高其强度。以商业上应用最为广泛的AZ31 (Mg-3Al-1Zn,质量分数,%)镁合金为例,Xin等[8]在室温下对AZ31镁合金板材沿着轧制方向(rolling direction,RD)施加6%压缩预变形,成功引入大量{101¯2} ET,可在不降低板材伸长率的情况下,将屈服应力显著提高131.7%。He等[9]在室温下对AZ31镁合金板材进行特定平面压缩预变形,即沿板材横向(transverse direction,TD)预压缩2.5%后,再沿RD进一步压缩2%,通过引入大量{101¯2} ET,使得板材的室温成形性能显著提升(Erichsen值显著提高50%)。Li等[10]研究了预变形对AZ31镁合金微观组织和塑性变形机制的影响,发现预变形引入的{101¯2} ET可以显著增强板材的力学性能(预变形量为3%时,板材屈服强度提高67%;预变形量为5%时,板材屈服强度提高130%)。Lee等[11]研究发现,通过对AZ31镁合金板材施加沿RD的压缩预变形,可以有效改变板材的织构特征,进而可以有效缓解弯曲试样外部区域的拉伸应变,最终显著改善板材的室温弯曲成形性能。

然而,在上述研究中,采用的AZ31镁合金板材多具有常见的基面织构特征且预变形多是以平面压缩的方式完成。事实上,这种平面压缩预变形的方法对实验设备有较高要求,且在预变形的过程中容易使板材产生翘曲进而导致材料失稳[7,9]。文献调研表明,目前对于非基面织构镁合金板材的预变形工艺及后续塑性变形行为研究还未见报道。Tu等[12]通过等径角轧制-连续弯曲-退火(equal channel angular rolling and continuous bending process with subsequent annealing,ECAR-CB-A)工艺,成功将双峰分离非基面织构引入AZ31镁合金板材,将其Erichsen值显著提升至7.4 mm,大幅度提升了板材的室温成形性能。另外,Zhang等[13]的研究表明,对这种双峰分离非基面织构AZ31镁合金板材进行道次压下量5%的深冷轧制变形,可以在不明显提升板材位错密度的同时,成功引入面积分数为8.4%的{101¯2} ET。可见,小压下量的深冷轧制变形对于双峰分离非基面板材而言是有效引入{101¯2} ET的预变形方法。然而,该预变形板材的后续室温变形行为及微观组织演变研究还未见报道。

鉴于此,本工作通过对双峰分离非基面织构AZ31镁合金板材施加小压下量的深冷轧制预变形,随后对其进行室温单轴拉伸实验,配合光学显微(OM)和电子背散射衍射(EBSD)表征,以阐明预变形对双峰分离非基面织构AZ31镁合金板材力学行为的影响及其与微观组织演化间的内在关联。

1 实验方法

采用ECAR-CB-A工艺制备具有双峰分离非基面织构的AZ31镁合金板材,相关工艺流程及工艺参数详见文献[12]。随后对板材进行电火花加工(electro-discharge machining,EDM)以得到尺寸为80 mm (RD) × 40 mm (TD) × 1.1 mm (法向,normal direction,ND)的矩形试样。在深冷轧制变形前,将矩形试样放置在充满液氮的容器中10 min以使其温度均匀,取出后立即进行轧制实验,道次减薄率为5%,轧辊转速为400 mm/s,轧机辊径为170 mm,相关过程如图1a所示。对深冷轧制后的试样再次进行EDM加工,分别沿RD和TD制得狗骨头状的拉伸试样(分别命名为RD试样和TD试样),试样尺寸如图1b所示,然后在SANS试验机上以0.001 s-1的恒定应变率进行室温单轴拉伸实验。为保证力学性能测试的准确性,上述实验各重复3次。另外,将RD试样分别拉伸至变形程度3%和6%,将TD试样分别拉伸至变形程度6%和12%,以观察相应条件下的微观组织演化。

图1

图1   实验流程及拉伸试样取样方式和相应尺寸示意图

Fig.1   Schematics of experiment procedure (a), and the sampling method and the corresponding dimension of manufactured tensile sample (b) (TD—transverse direction, RD—rolling direction. unit: mm)


采用DMI5000M型OM设备和装有HKL-Nordlys MAX探测器(EBSD探头)的NOVA 400场发射扫描电子显微镜(SEM)表征初始板材和变形板材的微观组织演化。上述关于OM和EBSD试样的制备方法详见文献[13]。另外在本工作中,EBSD试样的扫描步长为0.8 μm,观察面为RD × TD面,EBSD后处理软件为Channel 5。

2 实验结果

2.1 初始微观组织和织构

图2为深冷轧制预变形试样的微观组织和织构。由OM像(图2a)和反极图(IPF) (图2b)可以看出,该试样具有典型的等轴晶结构特征,且部分晶粒中出现了相互平行或交叉的{101¯2} ET (图2b中高亮部分),相应面积分数为8.9%,这与Zhang等[13]报道的实验结果({101¯2} ET面积分数8.4%)高度吻合。相应晶粒尺寸统计分析表明,该板材的平均晶粒尺寸为14.96 μm (图2c)。这与本课题组[14]前期报道的未经深冷轧制预变形的双峰分离非基面织构试样的初始晶粒尺寸(13.15 μm)类似。此外,图2d中的(0002)极图(PF)表明,该板材仍表现出双峰分离非基面织构特征(黑色线框),基极由ND向RD倾斜约24°,最大极点强度仅为5.6。由于深冷轧制预变形引入的大量{101¯2} ET,该板材亦具有少量的TD织构(晶粒c轴//TD)组分,如图2d中红色线框所示。

图2

图2   深冷轧制5%后AZ31镁合金板材的初始微观组织和织构

Fig.2   Initial microstructure and texture of AZ31 Mg alloy sheet after 5% cryogenic rolling

(a) OM image (b) inverse pole figure (IPF) (c) statistic analysis of grain size

(d) (0002) pole figure (PF) (The black dotted ellipses represent the non-basal bimodal texture with the basal poles tilting about ±24° away from normal direction (ND) to RD, and the red dotted ellipses represent the TD texture components)


2.2 单轴拉伸力学行为

图3a为深冷轧制预变形双峰分离非基面织构试样分别沿RD和TD拉伸的真应力-真应变曲线,为了对比,将未经深冷轧制预变形的双峰分离非基面织构试样的力学曲线[14]也显示在图中。可以看出,经过5%深冷轧制预变形后,RD试样的初始屈服强度(225 MPa)明显高于TD试样(140 MPa)。未预变形试样沿RD和TD拉伸的初始屈服强度分别为72和150 MPa[14]。可见,相较于未预变形试样,本工作中预变形试样沿RD拉伸的初始屈服强度有明显提升(212.5%),而沿TD拉伸的初始屈服强度则有轻微下降(6.7%)。就断裂延伸率(fracture elongation,FE)而言,深冷轧制预变形RD试样的FE (9.3%)显著低于TD试样的FE (17.1%),而未预变形试样则刚好相反(未预变形RD和TD试样的FE分别为21.6%和12.4%[14])。相较于未预变形试样,本工作中预变形试样在RD上的FE有明显下降(56.9%),而在TD上的FE则有明显提高(37.9%)。基于真应力-真应变曲线计算得到的加工硬化率曲线如图3b所示。可见,预变形试样沿RD拉伸过程中表现为两阶段硬化,而沿TD拉伸过程中表现为三阶段硬化。这表明,RD和TD试样在室温单轴拉伸过程中的变形机制存在显著差异。

图3

图3   RD和TD试样的真应力-真应变曲线和加工硬化曲线

Fig.3   True stress-strain curves (a) and strain hardening rate curves (b) of RD and TD samples


2.3 单轴拉伸过程中的微观组织和织构演化

45分别为RD和TD试样在室温单轴拉伸不同变形程度下的EBSD分析,包括IPF、晶界(GB)图和局部取向差(kernel average misorientation,KAM)图。在GB图中,考虑识别镁合金中常见的孪晶类型,即{101¯2} ET、{101¯1}压缩孪晶(compression twin,CT)和{101¯1}-{101¯2}双孪晶(double twin,DT),分别用红色、绿色和蓝色线条来突出显示这些孪晶的孪晶界。此外,在GB图中亦识别大角度晶界(high angle grain boundary,HAGB)和小角度晶界(low angle grain boundary,LAGB),前者对应取向差角大于15°,后者对应取向差角2°~15°。

图4

图4   RD试样单轴拉伸3%和6%条件下的EBSD分析

Fig.4   EBSD analyses of RD samples deformed to the deformation 3% (a-c) and 6% (d-f) (HAGB—high angle grain boundary, LAGB—low angle grain boundary) (a, d) IPFs (b, e) grain boundary (GB) maps (c, f) kernel average misorientation (KAM) maps


图5

图5   TD试样单轴拉伸6%和12%条件下的EBSD分析

Fig.5   EBSD analyses of TD samples deformed to the deformation 6% (a-c) and 12% (d-f) (a, d) IPFs (b, e) GB maps (c, f) KAM maps


图4a、b图5a、b可以看出,RD和TD试样分别在经历3%和6%拉伸变形后,晶粒中出现了大量的LAGB,同时出现的孪晶主要为{101¯2} ET。随着变形程度的增大,RD试样在6%拉伸变形后,虽然{101¯2} ET仍为主要的孪晶类型,但在部分晶粒中出现了{101¯1} CT和少量的{101¯1}-{101¯2} DT (图4de)。对TD试样而言,经历12%拉伸变形后,{101¯2} ET亦为主要的孪晶类型,但在部分晶粒中出现了较多孪晶片层相互平行的{101¯1}-{101¯2} DT。另外,从图4c、f图5c、f可以看出,在晶界和孪晶界等区域周围可观察到较高的KAM。上述现象表明,这些区域在单轴拉伸过程中,局部塑性应变协调困难,进而激活并累积了大量的几何必需位错(geometrically necessary dislocation,GND)[15,16]。具体地,RD试样在经历3%和6%拉伸变形后,KAM分别为1.24°和1.58°;TD试样在经历6%和12%拉伸变形后,KAM分别为1.26°和1.41°。可见,相比于TD试样,RD试样在单轴拉伸过程中协调局部塑性应变的难度更大。

3 分析讨论

3.1 初始屈服强度的差异

相较于未预变形试样,本工作中预变形试样沿RD拉伸的初始屈服强度有明显提升(212.5%)。这主要归因于以下2点:首先在本工作中,初始板材的基极由ND向RD倾斜的角度约为24°,远小于前期研究[17]中使用的双峰分离非基面织构板材(基极由ND向RD倾斜的角度约为40°)。因此,由双峰分离非基面织构引起的织构弱化效果会大幅度弱化,这将有利于板材初始屈服强度的明显提升[18~21]。其次在本工作中,深冷轧制预变形引入的高密度{101¯2} ET,如图2ab所示,将在有效阻碍塑性变形过程中位错运动的同时,通过孪晶界面分割晶粒,进而引入显著的细晶强化效果,大幅度提升板材的初始屈服强度[22]

另外,RD试样的初始屈服强度(225 MPa)明显高于TD试样的初始屈服强度(140 MPa)。研究[23,24]表明,初始织构会显著影响镁合金板材室温塑性变形过程中的变形机制激活,从而在变形过程发生不同的组织演化和织构演化,最终影响镁合金板材的室温塑性变形行为。在本工作中,经过深冷轧制预变形的板材,其主要织构特征包括基极由ND向RD倾斜约24°的双峰分离非基面织构组分(图2d中黑色线框)和TD织构(晶粒c轴//TD)组分(图2d中红色线框)。同时,Chen等[17]和Song等[25]的研究表明,由于具有最低的临界分切应力(critical revolved shear stress,CRSS),基面<a>滑移将在镁合金板材室温塑性变形的初始阶段即大量激活,进而决定初始屈服应力的大小。因此,本工作将具有上述2种织构组分特征的晶粒(亦包括预变形引入的{101¯2} ET)进一步筛选,并分析其沿不同方向单轴拉伸时的基面<a>滑移Schmid因子(SF),相应结果如图6所示。可见,双峰分离非基面织构组分所对应的晶粒在沿RD和TD单轴拉伸条件下的平均基面<a>滑移SF分别为0.384和0.174,而TD织构组分所对应的晶粒在沿RD和TD单轴拉伸条件下的平均基面<a>滑移SF分别为0.208和0.409。显然,在室温单轴拉伸过程中,TD试样中TD织构组分所对应的晶粒将比RD试样中双峰分离非基面织构组分所对应的晶粒更容易激活基面<a>滑移,以上就是导致RD和TD试样初始屈服强度产生差异的原因。

图6

图6   预变形板材沿RD和TD单轴拉伸条件下相应织构组分晶粒的Schmid因子(SF)分布

Fig.6   Schmid factor (SF) distributions of basal <a> slip in chosen grains with non-basal bimodal (a, c) and TD (b, d) texture characteristics (The inserted (0002) pole figures show the corresponding texture characteristics of selected regions) (a, b) loading along RD (c, d) loading along TD


值得注意的是,相较于未预变形试样,本工作中预变形试样沿TD拉伸的初始屈服强度有轻微下降(6.7%)。这主要是由于TD试样中TD织构组分所对应晶粒的平均基面<a>滑移SF较大(0.409),基面<a>滑移易于在室温单轴拉伸过程中激活,基本抵消了预变形引入的大量{101¯2} ET对板材的强化效果。

3.2 断裂延伸率的差异

相较于未预变形试样,本工作中预变形试样沿RD拉伸的FE降低了56.9%,沿TD拉伸的FE提高了37.9%。众所周知,镁合金板材在室温单轴拉伸过程中激活的变形机制将显著影响板材的FE[17,22]。在本工作中,RD和TD试样在室温单轴拉伸过程中的变形机制如图7所示。

图7

图7   RD和TD试样室温单轴拉伸过程中的变形机制示意图

Fig.7   Schematics of involved deformation mechanisms of RD (a) and TD (b) samples during uniaxial tension deformation at room temperature (ET—extension twin, CT—compression twin, DT—double twin)


对RD试样而言,双峰分离非基面织构组分所对应的晶粒在单轴拉伸条件下的平均基面<a>滑移SF为0.384。可见,大量的基面<a>滑移将在塑性变形初始阶段起即大量在相关晶粒中激活,进而在深冷预变形引入的{101¯2} ET界面位置和晶粒晶界位置大量塞积,这会阻碍{101¯2} ET片层的扩张,劣化板材协调局部塑性应变的能力,并产生严重的应力集中现象。随着塑性应变的增加,这些应力集中位置处将出现一定数量的{101¯1} CT,其CRSS比{101¯2} ET大2个数量级左右[26,27],进而导致试样内部形成微裂纹[28]。以上是导致RD试样FE明显降低的主要原因。

针对TD试样而言,双峰分离非基面织构组分所对应的晶粒在单轴拉伸条件下的平均基面<a>滑移SF仅为0.174。可见,基面<a>滑移在塑性变形初始阶段起在相关晶粒中的激活水平将低于RD试样,这亦会降低深冷预变形引入的{101¯2} ET界面位置和晶粒晶界位置的位错塞积程度,有助于{101¯2} ET片层的扩张,在承载更多的塑性应变的同时增强板材协调局部塑性应变的能力,缓解应力集中现象。与此同时,TD试样中TD织构组分所对应晶粒的平均基面<a>滑移SF较大(0.409),基面<a>滑移将在塑性变形初始阶段起即大量在相关晶粒中激活进而承载塑性应变。随着塑性应变的增加,部分晶粒中进一步形成一定数量的{101¯1}-{101¯2} DT来承载/协调塑性应变。另外,部分晶粒中亦出现少量的{101¯1} CT。以上是导致TD试样FE明显提升的主要原因。

4 结论

(1) 深冷轧制预变形试样沿RD单轴拉伸条件下的初始屈服强度和断裂延伸率分别为225 MPa和9.3%,较未预变形试样的初始屈服强度和断裂延伸率分别提升212.5%和降低56.9%。深冷轧制预变形试样沿TD单轴拉伸条件下的初始屈服强度和断裂延伸率分别为140 MPa和17.1%,较未预变形试样的初始屈服强度和断裂延伸率分别降低6.7%和提升37.9%。

(2) 单道次5%减薄率的深冷轧制变形可以在双峰分离非基面AZ31镁合金板材中引入面积分数为8.9%的{101¯2} ET。在后续室温单轴拉伸变形过程中,除了都出现大量的LAGB,RD试样在6%变形后即在部分晶粒中出现{101¯1} CT。TD试样在12%变形后在部分晶粒中出现一定数量的{101¯1}-{101¯2} DT和少量的{101¯1} CT。另外,KAM分析表明,相比于TD试样,RD试样在单轴拉伸过程中协调局部塑性应变的难度更大。

(3) RD试样室温单轴拉伸过程中的变形机制可归纳为:基面<a>滑移在双峰分离非基面织构组分所对应的晶粒中大量激活→{101¯2} ET界面扩张受到抑制→{101¯2} ET界面和晶粒晶界位置应力集中明显→{101¯1} CT;TD试样室温单轴拉伸过程中的变形机制可归纳为:基面<a>滑移在双峰分离非基面织构组分所对应的晶粒中的激活水品相对较低,在TD织构组分所对应的晶粒中的激活水品相对较高→{101¯2} ET界面扩张并吞噬基体晶粒→{101¯1}-{101¯2} DT激活并承载/协调塑性应变→{101¯1} CT。

参考文献

Wu J L, Jin L, Dong J, et al.

The texture and its optimization in magnesium alloy

[J]. J. Mater. Sci. Technol., 2020, 42: 175

DOI      [本文引用: 1]

he crystallographic orientations are generally non-random in wrought Mg alloy, which will lead to their macroscopic physical properties to be anisotropic. Understanding the texture evolution in processing of Mg alloy billets and its effect on mechanical properties is therefore an important project for all scientists and engineers in material area. This paper is concerned with the description of texture, with the mechanisms of texture evolution and with the interrelationships between texture and mechanical properties in Mg alloy. It is a full review of understanding of the basic mechanism on texture evolution, of texture altering by alloying or processing, and of the mechanism of texture weakening. Moreover, it provides theories necessary and available techniques to develop high-performance Mg wrought with optimized texture in the field.

Rajan S T, Das M, Arockiarajan A.

In vitro biocompatibility and degradation assessment of tantalum oxide coated Mg alloy as biodegradable implants

[J]. J. Alloys Compd., 2022, 905: 164272

Luo K, Zhang L, Wu G H, et al.

Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys

[J]. J. Magnes. Alloy., 2019, 7: 345

Srinivasan A, Blawert C, Huang Y, et al.

Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution

[J]. J. Magnes. Alloy., 2014, 2: 245

[本文引用: 1]

Song J F, She J, Chen D L, et al.

Latest research advances on magnesium and magnesium alloys worldwide

[J]. J. Magnes. Alloy., 2020, 8: 1

[本文引用: 1]

Wang C P, Xin R L, Li D R, et al.

Enhancing the age-hardening response of rolled AZ80 alloy by pre-twinning deformation

[J]. Mater. Sci. Eng., 2017, A680: 152

[本文引用: 1]

Kim S J, Lee C, Koo J, et al.

Improving the room-temperature formability of a magnesium alloy sheet by texture control

[J]. Mater. Sci. Eng., 2018, A724: 156

[本文引用: 1]

Xin Y C, Wang M Y, Zeng Z, et al.

Strengthening and toughening of magnesium alloy by {10 1 ¯ 2} extension twins

[J]. Scr. Mater., 2012, 66: 25

[本文引用: 1]

He W J, Zeng Q H, Yu H H, et al.

Improving the room temperature stretch formability of a Mg alloy thin sheet by pre-twinning

[J]. Mater. Sci. Eng., 2016, A655: 1

[本文引用: 2]

Li Y Y, Yang B W, Han T Z, et al.

Effect of pre-deformation on microstructure characteristics, texture evolution and deformation mechanism of AZ31 magnesium alloy

[J]. Mater. Sci. Eng., 2022, A845: 143234

[本文引用: 1]

Lee J N, Kim Y J, Kim S-H, et al.

Texture tailoring and bendability improvement of rolled AZ31 alloy using {10 1 ¯ 2} twinning: The effect of precompression levels

[J]. J. Magnes. Alloy., 2019, 7: 648

[本文引用: 2]

Tu J, Zhou T, Liu L, et al.

Effect of rolling speeds on texture modification and mechanical properties of the AZ31 sheet by a combination of equal channel angular rolling and continuous bending at high temperature

[J]. J. Alloys Compd., 2018, 768: 598

[本文引用: 2]

Zhang S Z, Hu L, Ruan Y T, et al.

Influence of bimodal non-basal texture on microstructure characteristics, texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature

[J]. J. Magnes. Alloy., 2023, 11: 2600

[本文引用: 3]

Hu L, Li M A, Chen Q, et al.

Dependence of microstructure evolution and mechanical properties on loading direction for AZ31 magnesium alloy sheet with non-basal texture during in-plane uniaxial tension

[J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 223

[本文引用: 4]

Yan C K, Feng A H, Qu S J, et al.

Dynamic recrystallization of titanium: Effect of pre-activated twinning at cryogenic temperature

[J]. Acta Mater., 2018, 154: 311

[本文引用: 1]

Wei D X, Koizumi Y, Nagasako M, et al.

Refinement of lamellar structures in Ti-Al alloy

[J]. Acta Mater., 2017, 125: 81

[本文引用: 1]

Chen Y, Hu L, Shi L X, et al.

Effect of texture types on microstructure evolution and mechanical properties of AZ31 magnesium alloy undergoing uniaxial tension deformation at room temperature

[J]. Mater. Sci. Eng., 2020, A769: 138497

[本文引用: 3]

Chino Y, Sassa K, Mabuchi M.

Enhancement of tensile ductility of magnesium alloy produced by torsion extrusion

[J]. Scr. Mater., 2008, 59: 399

[本文引用: 1]

Agnew S R, Horton J A, Lillo T M, et al.

Enhanced ductility in strongly textured magnesium produced by equal channel angular processing

[J]. Scr. Mater., 2004, 50: 377

Sheng K, Lu L W, Xiang Y, et al.

Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion

[J]. J. Magnes. Alloy., 2019, 7: 717

DOI     

A novel and effective method to co-extrude metallic alloys is described which named Direct Extrusion and Bending-Shear Deformation. The compound extrusion plates have cracked at 290 degrees C and 3 mm/s. According to this phenomenon, a model was built to investigate the crack generation and development between the 6061 Al and AZ31 Mg alloy during the compound extrusion process by DEFORM-3D. The cracking behavior of the Mg/Al composite rod with a soft Mg AZ31 core and a hard Al 6061 sleeve were systematically studied to disclose the influence of microstructure on crack in the different regions. The simulation results show that the distribution of strain and velocity has significant differences due to the influence of dies structure and material properties at different locations in the same region. The experimental results show that in the same conditions, there are differences in recrystallization and texture weakening of AZ31 Mg alloys and 6061 Al alloy, which are important factors for the formation of crack. Both the Mg layer and the Al layer have a homogeneous microstructure in the region d. (C) 2019 Published by Elsevier B.V. on behalf of Chongqing University.

Wang T, Wang Y L, Bian L P, et al.

Microstructural evolution and mechanical behavior of Mg/Al laminated composite sheet by novel corrugated rolling and flat rolling

[J]. Mater. Sci. Eng., 2019, A765: 138318

[本文引用: 1]

Zhang K, Zheng J H, Hopper C, et al.

Enhanced plasticity at cryogenic temperature in a magnesium alloy

[J]. Mater. Sci. Eng., 2021, A811: 141001

[本文引用: 2]

Wang Y, Choo H.

Influence of texture on Hall-Petch relationships in an Mg alloy

[J]. Acta Mater., 2014, 81: 83

[本文引用: 1]

Wang X J, Xu D K, Wu R Z, et al.

What is going on in magnesium alloys?

[J]. J. Mater. Sci. Technol., 2018, 34: 245

DOI      [本文引用: 1]

China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research interests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.

Song B, Xin R L, Guo N, et al.

Influence of basal slip activity in twin lamellae on mechanical behavior of Mg alloys

[J]. Mater. Lett., 2016, 176: 147

[本文引用: 1]

Yoshinag H, Horiuchi R.

Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis

[J]. Trans. Jpn Inst. Met., 1963, 4: 1

[本文引用: 1]

Wonsiewicz B C, Backofen W A.

Plasticity of magnesium crystals

[J]. Trans. AIME, 1967, 239: 1422

[本文引用: 1]

Li B, Ma Q, Mcclelland Z, et al.

Twin-like domains and fracture in deformed magnesium

[J]. Scr. Mater., 2013, 69: 493

[本文引用: 1]

/