Please wait a minute...
金属学报  2023, Vol. 59 Issue (8): 1087-1096    DOI: 10.11900/0412.1961.2022.00290
  研究论文 本期目录 | 过刊浏览 |
新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理
李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成(), 任玉平, 秦高梧
东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion
LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng(), REN Yuping, QIN Gaowu
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
Jingren LI, Dongsheng XIE, Dongdong ZHANG, Hongbo XIE, Hucheng PAN, Yuping REN, Gaowu QIN. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. Acta Metall Sin, 2023, 59(8): 1087-1096.

全文: PDF(4686 KB)   HTML
摘要: 

基于Pandat相图设计了一种新型的Mg-0.2Ce-0.2Ca (质量分数,%)三元合金,经常规挤压变形后的屈服强度约364 MPa、总合金化含量约0.4%,实现了高强度、低合金化。对挤压过程中不同阶段的组织进行表征,发现Mg-0.2Ce-0.2Ca合金中的孪晶存在于挤压的整个阶段,表现出了高的孪晶迁移阻力,并且在挤压变形的中后期,部分动态再结晶晶粒沿着孪晶变体交割区域形核,导致孪晶界面比例显著降低。Mg-0.2Ce-0.2Ca合金在挤压变形的早期阶段即存储了大量<c + a>位错,这些位错的运动阻力大,因此位错主导的回复再结晶机制直至挤压变形的后期才大量启动,并直接促进了该阶段镁合金中高比例超细晶粒的形成。分析认为,Mg-Ce-Ca合金挤压过程中微观组织演变的主要原因是Ca元素的添加提升了Mg基体孪晶运动阻力,且Ce、Ca元素的共添加诱导了多系滑移。

关键词 变形镁合金力学性能组织演变变形行为动态再结晶机制    
Abstract

This study utilizes the Pandat software to design a novel ternary alloy, Mg-0.2Ce-0.2Ca (mass fraction, %). The Mg alloy samples are extruded conventionally and provide high strength and low alloying with yield strength of approximately 364 MPa and total content of only approximately 0.4%. The microstructures at different stages of extrusion are characterized, revealing the existence of twin in the Mg-0.2Ce-0.2Ca alloy throughout the extrusion process, indicating high twin migration resistance. In the middle and later stages of extrusion, dynamically recrystallized grains nucleate at regions of intersected twinning variants, leading to a significant reduction in the proportion of twinning interfaces. Moreover, during the early stage of extrusion, a large number of <c + a> dislocations are stored in the Mg-0.2Ce-0.2Ca alloy, and the dislocation-dominated recovery/recrystallization mechanism is functional until the late stage of extrusion due to the high slipping resistance of dislocations. This mechanism directly contributes to the formation of ultrafine grains in present Mg alloy. The results show that the addition of Ca increases the resistance of twinning motion in the Mg matrix, while the addition of Ce and Ca induces multisystem slip, which are the main mechanisms for regulating the microstructure evolution of Mg-Ce-Ca alloy during extrusion. These findings have significant implications for the development of new high-strength, low-alloyed Mg alloys.

Key wordswrought Mg alloy    mechanical property    microstructure evolution    deformation behavior    DRX mechanism
收稿日期: 2022-06-10     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2021YFB3701000);国家自然科学基金项目(U2167213);国家自然科学基金项目(51971053);中国科协“青年托举”工程项目(2019-2021QNRC001);中国科协“青年托举”工程项目(2019-2021QNRC002);中国科协“青年托举”工程项目(2019-2021QNRC003);中央高校基本科研业务费项目(N2202020)
通讯作者: 潘虎成,panhc@atm.neu.edu.cn,主要从事高性能镁合金设计制备及变形和强化机制研究
Corresponding author: PAN Hucheng, associate professor, Tel:13166643462, E-mail: panhc@atm.neu.edu.cn
作者简介: 李景仁,男,1992年生,博士生
图1  Pandat计算Mg-0.2Ce-xCa合金的纵截面相图
图2  挤压态Mg-0.2Ce-0.2Ca合金力学性能和微观组织
AlloyComposition / (mass fraction, %)State*σys / MPaσuts / MPaElongation / %
MgPure MgF871855
M1Mg-1.5MnF18925512
AZ10Mg-1.5Al-0.2Zn-0.2MnF15524010
AZ31Mg-3Al-1Zn-0.6MnF20026015
AZ61Mg-6Al-1Zn-0.6MnF23031016
AZ80Mg-8Al-0.5Zn-0.1MnT52753807
ZK21Mg-2Zn-0.6ZrF1952604
ZK60Mg-6Zn-0.5ZrF26034011
WE43Mg-4Y-3REF21429614
AXM100Mg-0.6Al-0.28Ca-0.25MnT62532778
MgCeCaMg-0.2Ce-0.2CaF3643742.5 (this work)
表1  典型挤压商用镁合金与新型Mg-0.2Ce-0.2Ca合金力学性能[20,21]
图3  Mg-0.2Ce-0.2Ca合金挤压过程组织演变OM像
图4  距离挤压出口17.5 mm位置处的典型EBSD和TEM像
图5  距离挤压出口12.5 mm位置处的典型EBSD和TEM像
图6  距离挤压出口7.5 mm 位置处的典型EBSD和TEM结果
图7  距离挤压出口2.5 mm位置处的典型EBSD结果
图8  距离挤压出口不同位置处取向差角分布图
图9  距离挤压出口不同位置处小角度晶界和孪晶界占比分布
图10  挤压态Mg-Ce-Ca合金的局部取向差和晶界叠加处理图
1 Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
doi: 10.1016/j.jma.2022.04.001
2 Yang Q S, Jiang B, Song B, et al. The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet [J]. J. Magnes. Alloy., 2022, 10: 411
doi: 10.1016/j.jma.2020.08.005
3 Luo Q, Guo Y L, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
doi: 10.1016/j.jmst.2020.01.022
4 Luo Q, Zhai C, Gu Q F, et al. Experimental study and thermodynamic evaluation of Mg-La-Zn system [J]. J. Alloys Compd., 2020, 814: 152297
doi: 10.1016/j.jallcom.2019.152297
5 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
5 潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
6 Zha M, Wang S Q, Fang Y, et al. Advancement in research of rolled magnesium alloys with high performance [J]. J. Net. Form. Eng., 2020, 12(5): 20
6 查 敏, 王思清, 方 圆 等. 高性能轧制镁合金研究进展 [J]. 精密成形工程, 2020, 12(5): 20
7 Jiang M G, Xu C, Yan H, et al. Quasi-in-situ observing the rare earth texture evolution in an extruded Mg-Zn-Gd alloy with bimodal microstructure [J]. J. Magnes. Alloy., 2021, 9: 1797
doi: 10.1016/j.jma.2020.09.001
8 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
8 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
9 Zhang O, Hu H J, Hu G, et al. Research progress on composite refinement strengthening of magnesium alloy [J]. J. Net. Form. Eng., 2021, 13(6): 98
9 章 欧, 胡红军, 胡 刚 等. 镁合金复合细晶强化研究进展 [J]. 精密成形工程, 2021, 13(6): 98
10 Li J R, Xie D S, Zeng Z R, et al. Mechanistic investigation on Ce addition in tuning recrystallization behavior and mechanical property of Mg alloy [J]. J. Mater. Sci. Technol., 2023, 132: 1
doi: 10.1016/j.jmst.2022.05.042
11 Li J R, Zhang A Y, Pan H C, et al. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy [J]. J. Magnes. Alloy., 2021, 9: 1297
doi: 10.1016/j.jma.2020.05.011
12 Xie D S, Pan H C, Li M, et al. Role of Al addition in modifying microstructure and mechanical properties of Mg-1.0wt%Ca based alloys [J]. Mater. Charact., 2020, 169: 110608
doi: 10.1016/j.matchar.2020.110608
13 Li Z H, Sasaki T T, Uedono A, et al. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys [J]. Scr. Mater., 2022, 216: 114735
doi: 10.1016/j.scriptamat.2022.114735
14 Zhang A Y, Kang R, Wu L, et al. A new rare-earth-free Mg-Sn-Ca-Mn wrought alloy with ultra-high strength and good ductility [J]. Mater. Sci. Eng., 2019, A754: 269
15 Li M, Xie D S, Li J R, et al. Realizing ultra-fine grains and ultra-high strength in conventionally extruded Mg-Ca-Al-Zn-Mn alloys: The multiple roles of Nano-precipitations [J]. Mater. Charact., 2021, 175: 111049
doi: 10.1016/j.matchar.2021.111049
16 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
17 Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
doi: 10.1016/j.jma.2016.08.003
18 Aljarrah M, Medraj M. Thermodynamic modelling of the Mg-Ca, Mg-Sr, Ca-Sr and Mg-Ca-Sr systems using the modified quasichemical model [J]. Calphad, 2008, 32: 240
doi: 10.1016/j.calphad.2007.09.001
19 Wang T, Jiang L, Mishra R K, et al. Effect of Ca addition on the intensity of the rare earth texture component in extruded magnesium alloys [J]. Metall. Mater. Trans., 2014, 45A: 4698
20 Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: A review of developments and prospects [J]. Int. Mater. Rev., 2019, 64: 27
doi: 10.1080/09506608.2017.1421439
21 Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
doi: 10.1016/j.actamat.2018.07.054
22 Wang F L, Barrett C D, McCabe R J, et al. Dislocation induced twin growth and formation of basal stacking faults in {10 1 ¯ 2} twins in pure Mg [J]. Acta Mater., 2019, 165: 471
doi: 10.1016/j.actamat.2018.12.003
23 Wang F L, Agnew S R. Dislocation transmutation by tension twinning in magnesium alloy AZ31 [J]. Int. J. Plast., 2016, 81: 63
doi: 10.1016/j.ijplas.2016.01.012
24 He C, Zhang Y, Liu C Q, et al. Unexpected partial dislocations within stacking faults in a cold deformed Mg-Bi alloy [J]. Acta Mater., 2020, 188: 328
doi: 10.1016/j.actamat.2020.02.010
25 Jiang M G, Xu C, Yan H, et al. Correlation between dynamic recrystallization and formation of rare earth texture in a Mg-Zn-Gd magnesium alloy during extrusion [J]. Sci. Rep., 2018, 8: 16800
doi: 10.1038/s41598-018-35170-4 pmid: 30429510
26 Ye J, Mishra R K, Sachdev A K, et al. In situ TEM compression testing of Mg and Mg-0.2wt.%Ce single crystals [J]. Scr. Mater., 2011, 64: 292
doi: 10.1016/j.scriptamat.2010.09.047
27 Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
doi: 10.1016/j.actamat.2021.117151
28 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
29 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
30 Zhang D D, Pan H C, Li J R, et al. Fabrication of exceptionally high-strength Mg-4Sm-0.6Zn-0.4Zr alloy via low-temperature extrusion [J]. Mater. Sci. Eng., 2022, A833: 142565
31 Wen Y, Guan B, Xin Y C, et al. Solute atom mediated Hall-Petch relations for magnesium binary alloys [J]. Scr. Mater., 2022, 210: 114451
doi: 10.1016/j.scriptamat.2021.114451
32 Wang F L, Bhattacharyya J J, Agnew S R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys [J]. Mater. Sci. Eng., 2016, A666: 114
33 Yang Y, Liu Y, Yan S, et al. On the micromechanism of superior strength and ductility synergy in a heterostructured Mg-2.77Y alloy [J]. J. Magnes. Alloy., 2022,
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[8] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[9] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.