|
|
稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响 |
李民1,2, 李昊泽1( ), 王继杰2, 马颖澈1, 刘奎1 |
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2.沈阳航空航天大学 材料科学与工程学院 沈阳 110136 |
|
Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel |
LI Min1,2, LI Haoze1( ), WANG Jijie2, MA Yingche1, LIU Kui1 |
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.College of Materials Science and Engineering, Shenyang Areospace University, Shenyang 110136, China |
引用本文:
李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
Min LI,
Haoze LI,
Jijie WANG,
Yingche MA,
Kui LIU.
Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. Acta Metall Sin, 2022, 58(5): 637-648.
1 |
Yao Y C, Sha Y H, Liu J L, et al. Texture and magnetic properties of rolled Fe-6.5wt.% Si thin sheets [J]. J. Electron. Mater., 2014, 43: 121
doi: 10.1007/s11664-013-2842-2
|
2 |
Tanaka Y, Takada Y, Abe M, et al. Magnetic properties of 6.5%Si-Fe sheet and its applications [J]. J. Magn. Magn. Mater., 1990, 83: 375
doi: 10.1016/0304-8853(90)90553-3
|
3 |
Abe M, Takada Y, Murakami T, et al. Magnetic properties of commercially produced Fe-6.5wt% Si sheet [J]. J. Mater. Eng., 1989, 11: 109
doi: 10.1007/BF02833761
|
4 |
Phway T P P, Moses A J. Magnetostriction trend of non-oriented 6.5% Si-Fe [J]. J. Magn. Magn. Mater., 2008, 320: e611
doi: 10.1016/j.jmmm.2008.04.074
|
5 |
Viala B, Degauque J, Fagot M, et al. Study of the brittle behaviour of annealed Fe-6.5wt% Si ribbons produced by planar flow casting [J]. Mater. Sci. Eng., 1996, A212: 62
|
6 |
Ouyang G Y, Chen X, Liang Y F, et al. Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application [J]. J. Magn. Magn. Mater., 2019, 481: 234
doi: 10.1016/j.jmmm.2019.02.089
|
7 |
Li C S, Yang C L, Cai G J, et al. Ordered phases and microhardness of Fe-6.5%Si steel sheet after hot rolling and annealing [J]. Mater. Sci. Eng., 2016, A650: 84
|
8 |
Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling [J]. J. Magn. Magn. Mater., 2004, 281: 135
doi: 10.1016/j.jmmm.2004.04.098
|
9 |
Fu H D, Zhang Z H, Jiang Y B, et al. Improvement of magnetic properties of an Fe-6.5wt.% Si alloy by directional solidification [J]. Mater. Lett., 2011, 65: 1416
doi: 10.1016/j.matlet.2011.02.020
|
10 |
Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt.%Si alloy at intermediate temperatures [J]. Intermetallics, 2012, 23: 20
doi: 10.1016/j.intermet.2011.12.011
|
11 |
Fu H D, Zhang Z H, Jiang Y B, et al. Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5wt%Si alloy [J]. J. Alloys Compd., 2016, 689: 307
doi: 10.1016/j.jallcom.2016.07.319
|
12 |
Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5%Si steel sheet [J]. J. Magn. Magn. Mater., 1996, 160: 109
doi: 10.1016/0304-8853(96)00128-X
|
13 |
Yamaji T, Abe M, Takada Y, et al. Magnetic properties and workability of 6.5% silicon steel sheet manufactured in continuous CVD siliconizing line [J]. J. Magn. Magn. Mater., 1994, 133: 187
doi: 10.1016/0304-8853(94)90521-5
|
14 |
Matsushita T, Nakayama K, Fukase H, et al. Development and commercialization of twin roll strip caster [J]. IHI Eng. Rev., 2009, 42: 1
|
15 |
Zapuskalov N. Comparison of continuous strip casting with conventional technology [J]. ISIJ Int., 2003, 43: 1115
doi: 10.2355/isijinternational.43.1115
|
16 |
Ge S, Isac M, Guthrie R I L. Progress in strip casting technologies for steel; technical developments [J]. ISIJ Int., 2013, 53: 729
doi: 10.2355/isijinternational.53.729
|
17 |
Ge S, Isac M, Guthrie R I L. Progress of strip casting technology for steel; historical developments [J]. ISIJ Int., 2012, 52: 2109
doi: 10.2355/isijinternational.52.2109
|
18 |
Liu H T, Liu Z Y, Sun Y, et al. Development of λ-fiber recrystallization texture and magnetic property in Fe-6.5wt% Si thin sheet produced by strip casting and warm rolling method [J]. Mater. Lett., 2013, 91: 150
doi: 10.1016/j.matlet.2012.09.046
|
19 |
Li H Z, Liu H T, Liu Z Y, et al. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium [J]. Mater. Charact., 2015, 103: 101
doi: 10.1016/j.matchar.2015.03.024
|
20 |
Li H Z, Liu H T, Liu Z Y, et al. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel [J]. Mater. Charact., 2014, 88: 1
doi: 10.1016/j.matchar.2013.11.014
|
21 |
Liu H T, Li H Z, Li H L, et al. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel [J]. J. Magn. Magn. Mater., 2015, 391: 65
doi: 10.1016/j.jmmm.2015.04.105
|
22 |
Li H Z, Liu Z Y. Tensile properties of strip casting 6.5 wt% Si steel at elevated temperatures [J]. Mater. Sci. Eng., 2015, A639: 412
|
23 |
Li H Z, Liu H T, Wang X L, et al. Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5wt% Si alloy [J]. Mater. Lett., 2016, 165: 5
doi: 10.1016/j.matlet.2015.11.100
|
24 |
Liu H T, Liu Z Y, Qiu Y Q, et al. Characterization of the solidification structure and texture development of ferritic stainless steel produced by twin-roll strip casting [J]. Mater. Charact., 2009, 60: 79
doi: 10.1016/j.matchar.2008.06.005
|
25 |
Spinelli J E, Tosetti J P, Santos C A, et al. Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel [J]. J. Mater. Process. Technol., 2004, 150: 255
doi: 10.1016/j.jmatprotec.2004.02.040
|
26 |
Takatani H, Gandin C A, Rappaz M. EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow [J]. Acta Mater., 2000, 48: 675
doi: 10.1016/S1359-6454(99)00413-9
|
27 |
Waudby P E. Rare earth additions to steel [J]. Int. Met. Rev., 1978, 23: 74
doi: 10.1179/imr.1978.23.1.74
|
28 |
Chen X, Li Y X. Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification [J]. Mater. Sci. Eng., 2007, A444: 298
|
29 |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
|
30 |
Ouyang G Y, Macziewski C R, Jensen B, et al. Effects of solidification cooling rates on microstructures and physical properties of Fe-6.5% Si alloys [J]. Acta Mater., 2021, 205: 116575
doi: 10.1016/j.actamat.2020.116575
|
31 |
Cai G J, Yang Y, Huang Y R, et al. The significance of Ce on hot compression deformation and mechanical behavior of Fe-6.9 wt%Si alloy: Decrease of order degree and transformation of dislocations [J]. Mater. Charact., 2020, 163: 110220
doi: 10.1016/j.matchar.2020.110220
|
32 |
Shi X J, Liang Y F, Liu B B, et al. Warm deformation behavior and work-softening mechanism of Fe-6.5wt.%Si alloy [J]. J. Iron Steel Res. Int., 2020, 27: 342
|
33 |
Jung H, Kim J. Influence of cooling rate on iron loss behavior in 6.5wt% grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2014, 353: 76
doi: 10.1016/j.jmmm.2013.10.004
|
34 |
Yu X, Zhang Z H, Xie J X. Microstructure, ordered structure and warm tensile ductility of Fe-6.5% Si alloy with various Ce content [J]. Acta Metall. Sin., 2017, 53: 927
|
34 |
于 宣, 张志豪, 谢建新. 不同Ce含量Fe- 6.5%Si合金的组织、有序结构和中温拉伸塑性 [J]. 金属学报, 2017, 53: 927
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|